
Warden Finance
Wondrous-X
Smart Contract Audit Report

Date Issued: 21 Sep 2022

Version: Final v1.0

Warden Finance - Wondrous-X - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About Wondrous-X 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 12

Appendix 35
About Us 35
Contact Information 35
References 36

PUBLIC 2

Warden Finance - Wondrous-X - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the Wondrous-X feature. This

audit report was published on 21 Sep 2022. The audit scope is limited to the Wondrous-X feature. Our

security best practices strongly recommend that the Warden Finance team conduct a full security audit for

both on-chain and off-chain components of its infrastructure and their interaction. A comprehensive

examination has been performed during the audit process utilizing Valix’s Formal Verification, Static Analysis,

and Manual Review techniques.

About Wondrous-X

Wondrous-X contract is an ERC-721 token deploying on Optimism. The contract is meant to be a reward for

the whitelisted wallet addresses to mint their tokens for free during a certain period.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Warden Finance protocol.

The scope is limited to the Wondrous-X feature and their related smart contracts.

The security audit covered the components at this specific state:

Item Description

Components
▪ WondrousX smart contract

▪ Imported associated smart contracts and libraries

Git Repository ▪ https://github.com/Wardenswap/mwad-eggs-contracts

Audit Commit ▪ a304dad2f4174a56526a2e0255003064a4388483 (branch: main)

Reassessment Commit ▪ 90d1a6db2449d690b99c455825f0189e0aee2dd3 (branch: main)

Audited Files

▪ ./contracts/WondrousX.sol

▪ ./contracts/base/SaleSwitch.sol

▪ Other imported associated Solidity files

PUBLIC 3

Warden Finance - Wondrous-X - Smart Contract Audit

Excluded Files/Contracts ▪ ./contracts/WonderousXFusion.sol

Remark: Our security best practices strongly recommend that the Warden Finance team conduct a full

security audit for both on-chain and off-chain components of its infrastructure and the interaction between

them.

PUBLIC 4

Warden Finance - Wondrous-X - Smart Contract Audit

Auditors

Role Staff List

Auditors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Authors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Reviewers Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a

single point in time. As such, the scope was limited to current known risks during the work period. The review

does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred

percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided

code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or

“endorsement” of any particular project. This audit report should also not be used as investment advice nor

provide any legal compliance.

PUBLIC 5

Warden Finance - Wondrous-X - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the

Wondrous-X feature has sufficient security protections to be safe for use.

21 Sep 2022

Initially, Valix was able to identify 12 issues that were categorized from the “Critical” to “Informational” risk

level in the given timeframe of the assessment. For the reassessment, the Warden team decided to fix 6

issues and leave 6 issues as acknowledged. Below is the breakdown of the vulnerabilities found and their

associated risk rating for each assessment conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

Wondrous-X - 2 3 4 3 - 1 1 3 1

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

Warden Finance - Wondrous-X - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test

Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual

and automated review approaches can be mixed and matched, including business logic analysis in terms of

the malicious doer's perspective. Using automated scanning tools to navigate or find offending software

patterns in the codebase along with a purely manual or semi-automated approach, where the analyst

primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding of the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

Warden Finance - Wondrous-X - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

Warden Finance - Wondrous-X - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

Warden Finance - Wondrous-X - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,

Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are

presented in the table.

Risk Level Definition

Critical
The code implementation does not match the specification, and it could disrupt the

platform.

High
The code implementation does not match the specification, or it could result in losing

funds for contract owners or users.

Medium
The code implementation does not match the specification under certain conditions, or it

could affect the security standard by losing access control.

Low
The code implementation does not follow best practices or use suboptimal design

patterns, which may lead to security vulnerabilities further down the line.

Informational
Findings in this category are informational and may be further improved by following best

practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as

illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.

● Impact measures the technical loss and business damage of a successful attack.

● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels

"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the

risk to an acceptable level.

PUBLIC 10

Warden Finance - Wondrous-X - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Denial-Of-Service On NFT Minting High Acknowledged In use

2 Unlimited Max Supply For Minting NFTs High Fixed In use

3 Possibly Setting Improper Royalty Percentage Medium Fixed In use

4 Possibly Permanent Ownership Removal Medium Fixed In use

5 Unsafe Ownership Transfer Medium Acknowledged In use

6 Possibly Minting Out-Of-Bound Token ID Low Fixed In use

7 Activating NFT Minting Without Validating Start
Time Low Acknowledged In use

8 Configuring Start Time On NFT Minting Is Active Low Acknowledged In use

9 Compiler May Be Susceptible To Publicly Disclosed
Bugs Low Acknowledged In use

10 Recommended Improving Transparency And
Trustworthiness Of Privileged Operations Informational Acknowledged In use

11 Recommended Removing Unused Library Informational Fixed In use

12 Inconsistent Contract Name Informational Fixed In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 11

Warden Finance - Wondrous-X - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Denial-Of-Service On NFT Minting

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 60 - 72

Detailed Issue

The WondrousX contract has the mintAll function (L60 - 72 in the code snippet below) for minting the

Wondrous-X tokens. The mintAll function allows the whitelisted users to mint their Wondrous-X tokens.

We noticed that the minting process of the mintAll function allows minting any arbitrary number of the

Wondrous-X tokens. The minting process can consume gas beyond the block gas limit, leading to a

denial-of-service issue.

To elaborate on the issue, the mintAll function uses the for-loop statement (L69 - 71) to mint tokens.

However, this process does not check the length of the tokenIds parameter, which can consume gas

beyond the block gas limit if the length of the tokenIds parameter is too large.

As a result, the transaction would be reverted, and the affected whitelisted users could not mint their tokens.

PUBLIC 12

Warden Finance - Wondrous-X - Smart Contract Audit

WonderousX.sol

60

61

62

63

64

65

66

67

68

69

70

71

72

function mintAll(

uint256[] calldata tokenIds,

bytes32[] calldata merkleProofs

) external whenSaleActive nonReentrant {

require(

verifyWhitelist(_msgSender(), tokenIds, merkleProofs),

"Wondrous-X: not in whitelist"

);

for (uint256 i = 0; i < tokenIds.length; i++) {

_mintWDX(_msgSender(), tokenIds[i]);

}

}

Listing 1.1 The mintAll function of the WondrousX contract

Recommendations

We recommended checking the length of the tokenIds parameter on both the mintAll (L64) and

verifyWhitelist (L98) functions.

Since the whitelist would be created off-chain, the whitelist system must not allow adding the tokenIds for

each user beyond the minting limit to be compatible with the smart contract.

WonderousX.sol

60

61

62

63

64

65

66

67

68

69

70

71

72

73

87

88

function mintAll(

uint256[] calldata tokenIds,

bytes32[] calldata merkleProofs

) external whenSaleActive nonReentrant {

require(tokenIds.length <= MAX_TOKENIDS_LENGTH, "Wondrous-X: The tokenIds'

length exceeds the minting limit");

require(

verifyWhitelist(_msgSender(), tokenIds, merkleProofs),

"Wondrous-X: not in whitelist"

);

for (uint256 i = 0; i < tokenIds.length; i++) {

_mintWDX(_msgSender(), tokenIds[i]);

}

}

// (...SNIPPED...)

function verifyWhitelist(

address receiver,

PUBLIC 13

Warden Finance - Wondrous-X - Smart Contract Audit

89

90

91

98

93

94

95

96

97

uint256[] calldata tokenIds,

bytes32[] calldata merkleProofs

) public view returns (bool) {

require(tokenIds.length <= MAX_TOKENIDS_LENGTH, "Wondrous-X: The tokenIds'

length exceeds the minting limit");

require(_merkleRoot != "", "Wondrous-X: merkle root not set");

bytes32 leaf = keccak256(abi.encodePacked(receiver, tokenIds));

return MerkleProof.verify(merkleProofs, _merkleRoot, leaf);

}

Listing 1.2 The improved mintAll and verifyWhitelist functions

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code.

PUBLIC 14

Warden Finance - Wondrous-X - Smart Contract Audit

No. 2 Unlimited Max Supply For Minting NFTs

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 77 - 83

Detailed Issue

The WondrousX is a contract with an NFT minting function for whitelisted users. The internal _mintWDX

function (L77 - 83 in the code snippet below) is used to mint the token for the eligible users.

We found that the WondrousX contract does not have a specific maximum minting supply. This allows a

platform admin to open multiple rounds for whitelisted minting without restriction. Consequently, the unlimited

supply can decrease the value and rarity of each NFT in the WondrousX collection.

WonderousX.sol

77
78
79
80
81
82
83

function _mintWDX(address to, uint256 tokenId) internal {

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 2.1 The _mintWDX function that allows an unlimited minting for the WDX collection

PUBLIC 15

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend specifying the maximum minting supply for the WDX collection as shown in L78 in the code

snippet below.

WonderousX.sol

77
78
79
80
81
82
83
84

function _mintWDX(address to, uint256 tokenId) internal {

require(totalSupply() < MAX_SUPPLY, "Wondrous-X: max supply");

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 2.2 The improved _mintWDX function
that restricts a minting amount with the MAX_SUPPLY

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team fixed this issue by verifying the inputted tokenId with the maximum token id,

MAX_TOKEN_ID as shown in L81 in the code snippet below. As the MAX_TOKEN_ID is a constant value of

2999, the maximum minting supply for the WDX collection is 3000.

WondrousX.sol

79
80
81
82
83
84
85
86

function _mintWDX(address to, uint256 tokenId) internal {

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

require(tokenId <= MAX_TOKEN_ID, "Wondrous-X: invalid tokenId");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 2.3 The fixed _mintWDX function

PUBLIC 16

Warden Finance - Wondrous-X - Smart Contract Audit

No. 3 Possibly Setting Improper Royalty Percentage

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 134 - 142

Detailed Issue

The WondrousX contract has the setRoyalty function, which can set the new _royaltyPercentage and

_royaltyReceiver (L138 - 139) by providing the new royalty percentage and the new receiver address.

However, we noticed that the improper configuration of the _royaltyPercentage (L138) can lead to an

incorrect calculation result of the _royaltyAmount variable (L151) in the royaltyInfo function.

The following formula is used to calculate the _royaltyAmount variable:

_royaltyAmount = (salePrice * _royaltyPercentage) / 10000

Let’s say we have:

salePrice = 10000 and _royaltyPercentage = 20000

Thus:

_royaltyAmount = (10000 * 20000) / 10000

_royaltyAmount = 20000

The example above shows that if the _royaltyPercentage is greater than 10000, the resulting

_royaltyAmount would be greater than the salePrice which is impractical.

PUBLIC 17

Warden Finance - Wondrous-X - Smart Contract Audit

WonderousX.sol

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

/// @dev Set new royalty percentage and receiver address. Emit {SetRoyalty}.

function setRoyalty(uint256 royaltyPercentageBps, address receiver)

public

onlyOwner

{

_royaltyPercentage = royaltyPercentageBps;

_royaltyReceiver = receiver;

emit SetRoyalty(royaltyPercentageBps, receiver);

}

/// @dev Return royalty amount and receiver. See EIP-2981.

function royaltyInfo(uint256 tokenId, uint256 salePrice)

external

view

override

returns (address receiver, uint256 royaltyAmount)

{

uint256 _royaltyAmount = (salePrice * _royaltyPercentage) / 10000;

return (_royaltyReceiver, _royaltyAmount);

}

Listing 3.1 The setRoyalty and royaltyInfo functions of the WondrousX contract

Recommendations

We recommend validating the royaltyPercentageBps parameter to ensure that its value is lower than or

equal to a proper value. The code snippet below (L138) shows the code example for the remediation.

WonderousX.sol

133

134

135

136

137

138

139

140

141

142

143

/// @dev Set new royalty percentage and receiver address. Emit {SetRoyalty}.

function setRoyalty(uint256 royaltyPercentageBps, address receiver)

public

onlyOwner

{

require(royaltyPercentageBps <= MAX_ROYALTY_PERCENTAGE, "Wondrous-X:

royaltyPercentageBps is more than MAX_ROYALTY_PERCENTAGE");

_royaltyPercentage = royaltyPercentageBps;

_royaltyReceiver = receiver;

emit SetRoyalty(royaltyPercentageBps, receiver);

}

Listing 3.2 The improved setRoyalty function

PUBLIC 18

Warden Finance - Wondrous-X - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed according to our suggestion as the MAX_ROYALTY_PERCENTAGE is a constant value of

2000 (i.e., 20% basis points).

PUBLIC 19

Warden Finance - Wondrous-X - Smart Contract Audit

No. 4 Possibly Permanent Ownership Removal

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 54 - 56

Detailed Issue

The WondrousX contract inherits from the Ownable abstract contract. The Ownable contract implements the

renounceOwnership function (L54 - 56 in the code snippet below), which can remove the contract’s

ownership permanently.

If the contract owner mistakenly invokes the renounceOwnership function, they will immediately lose

ownership of the contract, and this action cannot be undone.

Ownable.sol

54

55

56

71

72

73

74

75

function renounceOwnership() public virtual onlyOwner {

_transferOwnership(address(0));

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 4.1 The renounceOwnership function
that can remove the ownership of the contract permanently

PUBLIC 20

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We consider the renounceOwnership function risky, and the contract owner should use this function with

extra care.

If possible, we recommend removing or disabling this function from the contract. The code snippet below

shows an example solution to disabling the associated renounceOwnership function.

WonderousX.sol

192

193

194

function renounceOwnership() external override onlyOwner {

revert("Ownable: renounceOwnership function is disabled");

}

Listing 4.2 The disabled renounceOwnership function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team fixed this issue by disabling the renounceOwnership function as per our suggestion.

PUBLIC 21

Warden Finance - Wondrous-X - Smart Contract Audit

No. 5 Unsafe Ownership Transfer

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 62 - 65

Detailed Issue

The WondrousX contract inherits from the Ownable abstract contract. The Ownable contract implements the

transferOwnership function (L62 - 65 in the code snippet below), which can transfer the ownership of the

contract from the current owner to another owner.

Ownable.sol

62

63

64

65

71

72

73

74

75

function transferOwnership(address newOwner) public virtual onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the zero address");

_transferOwnership(newOwner);

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 5.1 The transferOwnership function that has the unsafe ownership transfer

From the code snippet above, the address variable newOwner (L62) may be incorrectly specified by the

current owner by mistake; for example, an address that a new owner does not own was inputted.

Consequently, the new owner loses ownership of the contract immediately, and this action is unrecoverable.

PUBLIC 22

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend applying the two-step ownership transfer mechanism as shown in the code snippet below.

WonderousX.sol

192

193

194

195

196

197

198

199

200

201

202

function transferOwnership(address _candidateOwner) public override onlyOwner {

require(_candidateOwner != address(0), "Ownable: candidate owner is the zero

address");

candidateOwner = _candidateOwner;

emit NewCandidateOwner(_candidateOwner);

}

function claimOwnership() external {

require(candidateOwner == _msgSender(), "Ownable: caller is not the

candidate owner");

_transferOwnership(candidateOwner);

candidateOwner = address(0);

}

Listing 5.2 The recommended two-step ownership transfer mechanism

This mechanism works as follows.

1. The current owner invokes the transferOwnership function by specifying the candidate owner

address _candidateOwner (L192).

2. The candidate owner proves access to his account and claims the ownership transfer by invoking

the claimOwnership function (L198).

The recommended mechanism ensures that the ownership of the contract would be transferred to another

owner who can access his account only.

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code.

PUBLIC 23

Warden Finance - Wondrous-X - Smart Contract Audit

No. 6 Possibly Minting Out-Of-Bound Token ID

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 77 - 83

Detailed Issue

The WondrousX contract allows the whitelisted users to mint all their eligible tokens via the mintAll function.

The mintAll function contains the logic to verify the caller and then mint the tokens through the

verifyWhitelist and _mintWDX functions, respectively.

The _mintWDX function is the internal function to mint a Wondrous-X token to the specified address, to.

However, we found that there are no bounds checking for the tokenId parameter before minting which could

allow a user to mint an NFT token with an out-of-bound tokenId (if the off-chain whitelist system functions

incorrectly).

WonderousX.sol

77

78

79

80

81

82

83

function _mintWDX(address to, uint256 tokenId) internal {

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 6.1 The _mintWDX function that lacks of bounds checking for the tokenId parameter

PUBLIC 24

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend validating that the given tokenId does not exceed the max supply (L79 in the below code

snippet).

WonderousX.sol

77

78

79

80

81

82

83

function _mintWDX(address to, uint256 tokenId) internal {

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

require(tokenId < MAX_SUPPLY, "Wondrous-X: invalid tokenId");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 6.2 The improved _mintWDX function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team fixed this issue by verifying the inputted tokenId with the maximum token id,

MAX_TOKEN_ID as shown in L81 in the code snippet below, as the MAX_TOKEN_ID is a constant value of

2999.

WondrousX.sol

79
80
81
82
83
84
85
86

function _mintWDX(address to, uint256 tokenId) internal {

require(!_tokenMinted[tokenId], "Wondrous-X: already minted");

require(tokenId <= MAX_TOKEN_ID, "Wondrous-X: invalid tokenId");

_tokenMinted[tokenId] = true;

_safeMint(to, tokenId);

}

Listing 6.3 The fixed _mintWDX function

PUBLIC 25

Warden Finance - Wondrous-X - Smart Contract Audit

No. 7 Activating NFT Minting Without Validating Start Time

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files contracts/base/SaleSwitch.sol

Locations SaleSwitch.sol L: 21 - 25

Detailed Issue

We found that the startSale function (code snippet below) can be triggered by an owner to activate the

NFT minting process without validating whether or not the state variable saleStartTime is set.

Considering the case that the saleStartTime variable was not set. Upon invoking the startSale function,

the state variable saleActive would be activated (L23). Nonetheless, the NFT minting process still could not

actually be active for the minting.

SaleSwitch.sol

21

22

23

24

25

function startSale() external onlyOwner {

require(!saleActive, "SaleSwitch: already active");

saleActive = true;

emit SaleStarted(block.timestamp);

}

Listing 7.1 The startSale function
that does not validate the saleStartTime state variable

PUBLIC 26

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend validating the state variable saleStartTime (L23 in the code snippet below) or some proper

state variables before activating the state variable saleActive.

SaleSwitch.sol

21

22

23

24

25

26

function startSale() external onlyOwner {

require(!saleActive, "SaleSwitch: already active");

require(saleStartTime > 0, "SaleSwitch: saleStartTime not set");

saleActive = true;

emit SaleStarted(block.timestamp);

}

Listing 7.2 The improved startSale function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code.

PUBLIC 27

Warden Finance - Wondrous-X - Smart Contract Audit

No. 8 Configuring Start Time On NFT Minting Is Active

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files contracts/base/SaleSwitch.sol

Locations SaleSwitch.sol L: 33 - 36

Detailed Issue

We found that the setSaleStartAt function can be executed by an owner to set a permitted timestamp

saleStartTime (L34 in the code snippet below) for the NFT minting process. Nevertheless, the function

does not validate whether the state variable saleActive is activated or not.

In fact, the setSaleStartAt function should never be executable if the saleActive state variable is

activated (i.e., saleActive is set to true). In other words, the owner should call the pauseSale function to

deactivate the saleActive variable first. Then, call the setSaleStartAt function to configure the new

timestamp.

SaleSwitch.sol

33

34

35

36

function setSaleStartAt(uint256 _saleStartTime) public onlyOwner {

saleStartTime = _saleStartTime;

emit SaleStartSet(_saleStartTime);

}

Listing 8.1 The setSaleStartAt function that does not validate the saleActive state variable

PUBLIC 28

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend validating the state variable saleActive (L34 in the code snippet below) before setting the

state variable saleStartTime.

SaleSwitch.sol

33

34

35

36

37

function setSaleStartAt(uint256 _saleStartTime) public onlyOwner {

require(!saleActive, "SaleSwitch: sale is active");

saleStartTime = _saleStartTime;

emit SaleStartSet(_saleStartTime);

}

Listing 8.2 The improved setSaleStartAt function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code.

PUBLIC 29

Warden Finance - Wondrous-X - Smart Contract Audit

No. 9 Compiler May Be Susceptible To Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Acknowledged

Associated Files
contracts/WonderousX.sol
contracts/base/SaleSwitch.sol

Locations
WonderousX.sol L: 2
SaleSwitch.sol L: 2

Detailed Issue

The WondrousX and SaleSwitch contracts use an outdated Solidity compiler version which may be

susceptible to publicly disclosed vulnerabilities. The current compiler version is 0.8.7, which contains the list

of known bugs at the following link:

https://docs.soliditylang.org/en/v0.8.16/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some

attacks further.

An example code that does not use the latest patch version is shown below.

WonderousX.sol

1

2

// SPDX-License-Identifier: MIT

pragma solidity 0.8.7;

Listing 9.1 The current compiler version of the WondrousX contract

Recommendations

We recommend using the latest patch version, v0.8.16, which fixes all known bugs.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code.

PUBLIC 30

Warden Finance - Wondrous-X - Smart Contract Audit

No. 10 Recommended Improving Transparency And Trustworthiness Of Privileged
Operations

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files
contracts/WonderousX.sol
contracts/base/SaleSwitch.sol
@openzeppelin/contracts/access/Ownable.sol

Locations
WonderousX.sol L: 116 - 120, 123 - 127, and 134 - 142
SaleSwitch.sol L: 21 - 25, 27 - 31, and 33 - 36
Ownable.sol L: 54 - 56 and 62 - 65

Detailed Issue

Our analysis found that the owner account can perform several privileged operations as follows.

1. setBaseURI function (L116 - 120 in WonderousX.sol)

2. setMerkleRoot function (L123 - 127 in WonderousX.sol)

3. setRoyalty function (L134 - 142 in WonderousX.sol)

4. startSale function (L21 - 25 in SaleSwitch.sol)

5. pauseSale function (L27 - 31 in SaleSwitch.sol)

6. setSaleStartAt function (L33 - 36 in SaleSwitch.sol)

7. renounceOwnership function (L54 - 56 in Ownable.sol)

8. transferOwnership function (L62 - 65 in Ownable.sol)

Although those privileged functions do not manage significant user assets that could lead to loss of user

assets directly. However, we consider that those privileged functions should be improved for

transparency and trustworthiness.

PUBLIC 31

Warden Finance - Wondrous-X - Smart Contract Audit

Recommendations

We recommend governing the associated functions with the Multisig, Timelock, and/or DAO

(Decentralized Autonomous Organization) mechanisms to improve the transparency and

trustworthiness of the WDX collection.

Reassessment

The Warden team acknowledged this issue and decided to retain the original code and design.

PUBLIC 32

Warden Finance - Wondrous-X - Smart Contract Audit

No. 11 Recommended Removing Unused Library

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 9

Detailed Issue

We found that the WondrousX contract imported the unused library Counters (L9 in the code snippet below).

Hence, the library can be removed to improve code readability.

WonderousX.sol

1

2

3

4

5

6

7

8

9

// SPDX-License-Identifier: MIT

pragma solidity 0.8.7;

import "@openzeppelin/contracts/interfaces/IERC2981.sol";

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";

import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";

import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol";

import "@openzeppelin/contracts/access/Ownable.sol";

import "@openzeppelin/contracts/utils/Counters.sol";

// (...SNIPPED...)

Listing 11.1 The unused Counters library

Recommendations

We recommend removing the unused imported library Counters to improve code readability.

Reassessment

The Warden team removed the unused library in accordance with our recommendation.

PUBLIC 33

Warden Finance - Wondrous-X - Smart Contract Audit

No. 12 Inconsistent Contract Name

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/WonderousX.sol

Locations WonderousX.sol L: 14

Detailed Issue

We found inconsistency between the file name (WonderousX) and the contract name (WondrousX) as

presented in the below code snippet, which can confuse the users and developers.

WonderousX.sol

14

15

16

17

18

19

20

21

22

contract WondrousX is

ERC721,

ERC721Enumerable,

ERC721Burnable,

IERC2981,

Ownable,

SaleSwitch,

ReentrancyGuard

{

// (...SNIPPED...)

Listing 12.1 The contract name WondrousX

Recommendations

We recommend renaming the associated contract and file names to be consistent.

Reassessment

The Warden team fixed this issue by renaming the file name from WonderousX.sol to WondrousX.sol to be

consistent with the contract name.

PUBLIC 34

Warden Finance - Wondrous-X - Smart Contract Audit

Appendix

About Us

Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of

cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract

security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in areas of private and

public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes

recommendations on smart contracts' security and gas optimization to bring the most benefit to users and

platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 35

Warden Finance - Wondrous-X - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 36

