

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About Aegis and Aegis L2 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 13

Appendix 70
About Us 70
Contact Information 70
References 71

PUBLIC 2

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the Aegis and Aegis L2
features of the WardenSwap version 1.5. This audit report was published on October 6, 2021. The audit
scope is limited to the Aegis and Aegis L2 features. Our security best practices strongly recommend that
the Warden Finance team conduct a full security audit for both on-chain and off-chain components of its
infrastructure and their interaction. A comprehensive examination has been performed during the audit
process utilizing Valix’s Formal Verification, Static Analysis, and Manual Review techniques.

About Aegis and Aegis L2

Aegis is the release version of Warden Finance that implements trading strategies learning algorithm into a
smart contract (on chain's machine learning). Aegis uses the learning outcome to optimize future Best Rate
swaps.

Aegis L2 is the release version that focuses on gas optimization on the Ethereum Layer 2 Scaling Solution
like Optimistic Rollup (e.g., Optimism and Arbitrum). Aegis L2 uses custom data serialization and
compression algorithms to reduce calldata bytes and storage slot usage.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Warden Finance protocol.
The scope is limited to the Aegis and Aegis L2 features and their related smart contracts.

The security audit covered the components at this specific state:

Item Description

Components

▪ WardenSwap1_5_Aegis smart contract

▪ WardenSwap1_5_Aegis_L2 smart contract

▪ WardenCosmoCore smart contract

▪ WardenDataDeserialize smart contract

▪ BytesLib smart contract library

▪ WardenDataSerialize smart contract

▪ Imported associated smart contracts and libraries

GitHub Repository ▪ https://github.com/Wardenswap/warden-swap

Commit ▪ b03ee7c3190415e62223ede8ee4ad21f4cca6691

PUBLIC 3

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Reassessment Commit ▪ 5a8fefcfc466e8b8408846694114906f7c625651

Audited Files

▪ WardenSwap1_5_L2.sol

▪ interface/IWardenCosmicBrainForL2.sol

▪ interface/IWardenCosmoCore0_8.sol

▪ interface/IWardenPostTrade.sol

▪ libraries/IWETH.sol

▪ libraries/IWardenTradingRoute0_8.sol

▪ libraries/WardenCosmoCore.sol

▪ libraries/WardenDataDeserialize.sol

▪ library/arbitrum/IArbAddressTable.sol

▪ library/byte/BytesLib.sol

▪ tools/WardenDataSerialize.sol

Excluded Files/Contracts

▪ WardenSwap1_5_L2_dryrun.sol

▪ WardenCosmicBrain smart contract

▪ WardenPostTrade smart contract

▪ WETH smart contract

▪ WardenTradingRoute smart contract

▪ ArbAddressTable smart contract

Remark: Our security best practices strongly recommend that the Warden Finance team conduct a full
security audit for both on-chain and off-chain components of its infrastructure and the interaction between
them.

PUBLIC 4

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Auditors

Phuwanai Thummavet

Sumedt Jitpukdebodin

Keerati Torach

Boonpoj Thongakaraniroj

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a
single point in time. As such, the scope was limited to current known risks during the work period. The review
does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred
percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided
code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or
“endorsement” of any particular project. This audit report should also not be used as investment advice nor
provide any legal compliance.

PUBLIC 5

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the Aegis and
Aegis L2 features have sufficient security protections to be safe for use.

Initially, Valix was able to identify 19 issues that were categorized from the “Critical” to “Informational” risk
level in the given timeframe of the assessment. On the reassessment, 13 out of 19 issues were fixed. For the
acknowledged issues, the Warden Finance team acknowledged each issue but decided to remain the
original code. Below is the breakdown of the vulnerabilities found and their associated risk rating for each
assessment conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

Aegis and Aegis L2 - - - 9 10 - - - 3 3

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test
Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual
and automated review approaches can be mixed and matched, including business logic analysis in terms of
the malicious doer's perspective. Using automated scanning tools to navigate or find offending software
patterns in the codebase along with a purely manual or semi-automated approach, where the analyst
primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,
Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are
presented in the table.

Risk Level Definition

Critical The code implementation does not match the specification, and it could disrupt the
platform.

High The code implementation does not match the specification, or it could result in the loss
of funds for contract owners or users.

Medium The code implementation does not match the specification under certain conditions, or it
could affect the security standard by losing access control.

Low The code implementation does not follow best practices or use suboptimal design
patterns, which may lead to security vulnerabilities further down the line.

Informational Findings in this category are informational and may be further improved by following best
practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as
illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.
● Impact measures the technical loss and business damage of a successful attack.
● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels
"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the
risk to an acceptable level.

PUBLIC 10

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Potential Stealing of Leftover Ether and WETH Low Fixed In use

2 Potential Lock of Ether Low Fixed In use

3 Recommended Updating The PostTrade Contract
With Extra Care Low Acknowledged In use

4 Unchecking Duplication of Trading Route On The
addTradingRoute Function Low Acknowledged In use

5 Unchecking Duplication of Trading Route On The
updateTradingRoute Function Low Acknowledged In use

6 The Split Volume May Be Inconsistent With The
Actual Amount Low Fixed In use

7 Lack of Some Edge Case In Input Validation Low Fixed In use

8 The Compiler May Be Susceptible To The Publicly
Disclosed Bugs Low Fixed In use

9 The Compiler Is Not Locked To A Specific Version Low Fixed In use

10 Transparency Improvement For The
collectRemainingToken Function Informational Fixed In use

11 Transparency Improvement For The
collectRemainingEther Function Informational Fixed In use

12 Gas Optimization and Readability Improvement On
The _split2 Function Informational Fixed In use

13 Inconsistent Comments/Error Messages With The
Code Informational Fixed In use

14 Recommended Explicit Trading Route Validation
Checks Informational Acknowledged In use

15 Unchecked Call Return Value Informational Acknowledged In use

16 Gas Optimization On Redundant Code Informational Acknowledged In use

17 Duplicate Function Implementation Informational Fixed In use

PUBLIC 11

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. Issue Risk Status Functionality is
in use

18 Generic Typographic Error Informational Fixed In use

19 Misleading Function Name Informational Fixed In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 12

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Potential Stealing of Leftover Ether and WETH

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations

_tradeStrategiesWithSafeGuard(IERC20, uint256, IERC20, uint256, uint256[],

IERC20[], address, uint256) L: 196 - 285

_splitTradesWithSafeGuard(uint256[], uint256[], IERC20, uint256, IERC20)

L: 409 - 458

tradeEthToWeth(address) L: 524 - 536

tradeWethToEth(uint256, address) L: 544 - 558

Detailed Issue

The state variable weth (line no. 20) points to the external WETH contract responsible for wrapping the Ether
(native ETH) to the ERC20 token, WETH, and vice versa.

In exchange, when we deposit the Ether to the WETH contract, the deposited Ether will be locked, and the
same amount in WETH will be minted and returned to us. On the other hand, we can withdraw the locked
Ether by transferring the same amount in WETH to the WETH contract to burn.

However, if the weth variable is initialized with the rogue (forged) WETH contract by mistake, the rogue
contract could secretly steal the Ethers or WETHs leftover in the WardenSwap1_5_Aegis contract.

Note that the leftover Ether and WETH mean the tokens are mistakenly transferred by a user and locked in
the WardenSwap1_5_Aegis contract.

Consider the following attack scenario for better understanding.

PUBLIC 13

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Figure 1.1 The Rogue contract can steal the leftover Ether and WETH from the Aegis contract

1. Bob initiates a swap transaction of 1 Ether for WETH to Aegis contract

2. Aegis contract transfers 1 Ether to Rogue contract

3. Rogue contract checks for the WETH balance locked in Aegis contract

4. Aegis contract has 0.7 WETH locked in, for instance

5. Rogue contract transfers 0.3 Ether (instead of 1 Ether) to WETH contract

6. WETH contract locks 0.3 Ether, mints the same amount in WETH, and transfers the minted WETH to
Rogue contract

7. Rogue contract transfers only 0.3 WETH (instead of 1 WETH) to Aegis contract

PUBLIC 14

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

8. Aegis contract transfers 1 WETH to Bob (without checking its WETH balance)

The Rogue contract can privately steal all Ether and WETH tokens locked in the Aegis contract by swapping
the tokens using the attack scenario above. This attack scenario can be triggered by an attacker itself or just
a regular user.

The functions affected with this issue include _tradeStrategiesWithSafeGuard (line no's. 196 - 285),
_splitTradesWithSafeGuard (line no's. 409 - 458), tradeEthToWeth (line no's. 524 - 536), and
tradeWethToEth (line no's. 544 - 558). The following code snippets show the affected functions.

WardenSwap1_5_L2.sol

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

function _tradeStrategiesWithSafeGuard(

IERC20 _src,

uint256 _srcAmount,

IERC20 _dest,

uint256 _minDestAmount,

uint256[] memory _subRoutes,

IERC20[] memory _correspondentTokens,

address _receiver,

uint256 _learnedId

)

private

returns(uint256 _destAmount)

{

require(_subRoutes.length - 1 == _correspondentTokens.length, "WardenSwap:

routes and tokens length mismatched");

{

IERC20 adjustedSrc;

IERC20 adjustedDest = ETHER_ERC20 == _dest ? IERC20(address(weth)) :

_dest;

address fromAddress;

// Wrap ETH

if (ETHER_ERC20 == _src) {

require(msg.value == _srcAmount, "WardenSwap: Ether source amount

mismatched");

weth.deposit{value: _srcAmount}();

adjustedSrc = IERC20(address(weth));

fromAddress = address(this);

} else {

adjustedSrc = _src;

fromAddress = msg.sender;

}

// Record src/dest asset for later consistency check.

uint256 srcAmountBefore = adjustedSrc.balanceOf(fromAddress);

uint256 destAmountBefore = adjustedDest.balanceOf(address(this));

_destAmount = _tradeStrategies(

PUBLIC 15

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

adjustedSrc,

_srcAmount,

adjustedDest,

_subRoutes,

_correspondentTokens,

fromAddress

);

// Sanity check

// Recheck if src/dest amount correct

require(adjustedSrc.balanceOf(fromAddress) == srcAmountBefore -

_srcAmount, "WardenSwap: source amount mismatched after trade");

require(adjustedDest.balanceOf(address(this)) == destAmountBefore +

_destAmount, "WardenSwap: destination amount mismatched after trade");

}

// Unwrap ETH

if (ETHER_ERC20 == _dest) {

weth.withdraw(_destAmount);

}

// Collect fee

_destAmount = _postTradeAndCollectFee(

_src,

_dest,

_srcAmount,

_destAmount,

msg.sender,

_receiver,

false

);

// Throw exception if destination amount doesn't meet user requirement.

require(_destAmount >= _minDestAmount, "WardenSwap: destination amount is too

low.");

if (ETHER_ERC20 == _dest) {

(bool success,) = _receiver.call{value: _destAmount}(""); // Send back

ether to sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

} else { // Send back token to sender

_dest.safeTransfer(_receiver, _destAmount);

}

uint256 learnedId = _learnedId;

if (0 == _learnedId) {

learnedId = cosmicBrain.train(_subRoutes, _correspondentTokens);

}

cosmicBrain.trainTradingPair(

_src,

_dest,

PUBLIC 16

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

279

280

281

282

283

284

285

_srcAmount,

_destAmount,

learnedId

);

emit Trade(address(_src), _srcAmount, address(_dest), _destAmount,

msg.sender, _receiver, 0 != _learnedId, false);

}

Listing 1.1 The affected _tradeStrategiesWithSafeGuard function

WardenSwap1_5_L2.sol

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

function _splitTradesWithSafeGuard(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest

)

private

returns(uint256 _destAmount)

{

IERC20 adjustedSrc;

IERC20 adjustedDest = ETHER_ERC20 == _dest ? IERC20(address(weth)) : _dest;

address fromAddress;

// Wrap ETH

if (ETHER_ERC20 == _src) {

require(msg.value == _totalSrcAmount, "WardenSwap: Ether source amount

mismatched");

weth.deposit{value: _totalSrcAmount}();

adjustedSrc = IERC20(address(weth));

fromAddress = address(this);

} else {

adjustedSrc = _src;

fromAddress = msg.sender;

}

// Record src/dest asset for later consistency check.

uint256 srcAmountBefore = adjustedSrc.balanceOf(fromAddress);

uint256 destAmountBefore = adjustedDest.balanceOf(address(this));

_destAmount = _split2(

_learnedIds,

_volumns,

adjustedSrc,

_totalSrcAmount,

PUBLIC 17

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

adjustedDest,

fromAddress

);

// Sanity check

// Recheck if src/dest amount correct

require(adjustedSrc.balanceOf(fromAddress) == srcAmountBefore -

_totalSrcAmount, "WardenSwap: source amount mismatched after trade");

require(adjustedDest.balanceOf(address(this)) == destAmountBefore +

_destAmount, "WardenSwap: destination amount mismatched after trade");

// Unwrap ETH

if (ETHER_ERC20 == _dest) {

weth.withdraw(_destAmount);

}

}

Listing 1.2 The affected _splitTradesWithSafeGuard function

WardenSwap1_5_L2.sol

524

525

526

527

528

529

530

531

532

533

534

535

536

function tradeEthToWeth(

address _receiver

)

external

payable

nonReentrant

returns(uint256 _destAmount)

{

weth.deposit{value: msg.value}();

IERC20(address(weth)).safeTransfer(_receiver, msg.value);

_destAmount = msg.value;

emit Trade(address(ETHER_ERC20), msg.value, address(weth), _destAmount,

msg.sender, _receiver, false, false);

}

Listing 1.3 The affected tradeEthToWeth function

PUBLIC 18

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenSwap1_5_L2.sol

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

function tradeWethToEth(

uint256 _srcAmount,

address _receiver

)

external

nonReentrant

returns(uint256 _destAmount)

{

IERC20(address(weth)).safeTransferFrom(msg.sender, address(this),

_srcAmount);

weth.withdraw(_srcAmount);

(bool success,) = _receiver.call{value: _srcAmount}(""); // Send back ether

to sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

_destAmount = _srcAmount;

emit Trade(address(weth), _srcAmount, address(ETHER_ERC20), _destAmount,

msg.sender, _receiver, false, false);

}

Listing 1.4 The affected tradeWethToEth function

The root cause of this issue is because the affected functions did not verify the balance of Ether or WETH
after the Ether wrapping or unwrapping process.

Recommendations

We recommend updating the affected functions to verify that the Ether or WETH is still in the balance after the
Ether wrapping or unwrapping process. Consider the following code snippets for the improved functions.

WardenSwap1_5_L2.sol

196

197

198

199

200

201

202

203

204

205

206

207

208

209

function _tradeStrategiesWithSafeGuard(

IERC20 _src,

uint256 _srcAmount,

IERC20 _dest,

uint256 _minDestAmount,

uint256[] memory _subRoutes,

IERC20[] memory _correspondentTokens,

address _receiver,

uint256 _learnedId

)

private

returns(uint256 _destAmount)

{

require(_subRoutes.length - 1 == _correspondentTokens.length, "WardenSwap:

routes and tokens length mismatched");

PUBLIC 19

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

{

IERC20 adjustedSrc;

IERC20 adjustedDest = ETHER_ERC20 == _dest ? IERC20(address(weth)) :

_dest;

address fromAddress;

// Wrap ETH

if (ETHER_ERC20 == _src) {

require(msg.value == _srcAmount, "WardenSwap: Ether source amount

mismatched");

uint256 wethAmountBefore =

IERC20(address(weth)).balanceOf(address(this));

weth.deposit{value: _srcAmount}();

uint256 wethAmountAfter =

IERC20(address(weth)).balanceOf(address(this));

// Verify the balance of WETH after wrapping

require(wethAmountAfter == wethAmountBefore + _srcAmount,

"WardenSwap: received unexpected WETH amount");

adjustedSrc = IERC20(address(weth));

fromAddress = address(this);

} else {

adjustedSrc = _src;

fromAddress = msg.sender;

}

// Record src/dest asset for later consistency check.

uint256 srcAmountBefore = adjustedSrc.balanceOf(fromAddress);

uint256 destAmountBefore = adjustedDest.balanceOf(address(this));

_destAmount = _tradeStrategies(

adjustedSrc,

_srcAmount,

adjustedDest,

_subRoutes,

_correspondentTokens,

fromAddress

);

// Sanity check

// Recheck if src/dest amount correct

require(adjustedSrc.balanceOf(fromAddress) == srcAmountBefore -

_srcAmount, "WardenSwap: source amount mismatched after trade");

require(adjustedDest.balanceOf(address(this)) == destAmountBefore +

_destAmount, "WardenSwap: destination amount mismatched after trade");

}

// Unwrap ETH

PUBLIC 20

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

if (ETHER_ERC20 == _dest) {

uint256 etherAmountBefore = address(this).balance;

weth.withdraw(_destAmount);

uint256 etherAmountAfter = address(this).balance;

// Verify the balance of Ether after unwrapping

require(etherAmountAfter == etherAmountBefore + _destAmount, "WardenSwap:

received unexpected Ether amount");

}

// Collect fee

_destAmount = _postTradeAndCollectFee(

_src,

_dest,

_srcAmount,

_destAmount,

msg.sender,

_receiver,

false

);

// Throw exception if destination amount doesn't meet user requirement.

require(_destAmount >= _minDestAmount, "WardenSwap: destination amount is too

low.");

if (ETHER_ERC20 == _dest) {

(bool success,) = _receiver.call{value: _destAmount}(""); // Send back

ether to sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

} else { // Send back token to sender

_dest.safeTransfer(_receiver, _destAmount);

}

uint256 learnedId = _learnedId;

if (0 == _learnedId) {

learnedId = cosmicBrain.train(_subRoutes, _correspondentTokens);

}

cosmicBrain.trainTradingPair(

_src,

_dest,

_srcAmount,

_destAmount,

learnedId

);

emit Trade(address(_src), _srcAmount, address(_dest), _destAmount,

msg.sender, _receiver, 0 != _learnedId, false);

}

Listing 1.5 The improved _tradeStrategiesWithSafeGuard function

PUBLIC 21

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenSwap1_5_L2.sol

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

function _splitTradesWithSafeGuard(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest

)

private

returns(uint256 _destAmount)

{

IERC20 adjustedSrc;

IERC20 adjustedDest = ETHER_ERC20 == _dest ? IERC20(address(weth)) : _dest;

address fromAddress;

// Wrap ETH

if (ETHER_ERC20 == _src) {

require(msg.value == _totalSrcAmount, "WardenSwap: Ether source amount

mismatched");

uint256 wethAmountBefore =

IERC20(address(weth)).balanceOf(address(this));

weth.deposit{value: _totalSrcAmount}();

uint256 wethAmountAfter = IERC20(address(weth)).balanceOf(address(this));

// Verify the balance of WETH after wrapping

require(wethAmountAfter == wethAmountBefore + _totalSrcAmount,

"WardenSwap: received unexpected WETH amount");

adjustedSrc = IERC20(address(weth));

fromAddress = address(this);

} else {

adjustedSrc = _src;

fromAddress = msg.sender;

}

// Record src/dest asset for later consistency check.

uint256 srcAmountBefore = adjustedSrc.balanceOf(fromAddress);

uint256 destAmountBefore = adjustedDest.balanceOf(address(this));

_destAmount = _split2(

_learnedIds,

_volumns,

adjustedSrc,

_totalSrcAmount,

adjustedDest,

fromAddress

);

// Sanity check

PUBLIC 22

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

// Recheck if src/dest amount correct

require(adjustedSrc.balanceOf(fromAddress) == srcAmountBefore -

_totalSrcAmount, "WardenSwap: source amount mismatched after trade");

require(adjustedDest.balanceOf(address(this)) == destAmountBefore +

_destAmount, "WardenSwap: destination amount mismatched after trade");

// Unwrap ETH

if (ETHER_ERC20 == _dest) {

uint256 etherAmountBefore = address(this).balance;

weth.withdraw(_destAmount);

uint256 etherAmountAfter = address(this).balance;

// Verify the balance of Ether after unwrapping

require(etherAmountAfter == etherAmountBefore + _destAmount, "WardenSwap:

received unexpected Ether amount");

}

}

Listing 1.6 The improved _splitTradesWithSafeGuard function

WardenSwap1_5_L2.sol

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

function tradeEthToWeth(

address _receiver

)

external

payable

nonReentrant

returns(uint256 _destAmount)

{

uint256 wethAmountBefore = IERC20(address(weth)).balanceOf(address(this));

weth.deposit{value: msg.value}();

uint256 wethAmountAfter = IERC20(address(weth)).balanceOf(address(this));

// Verify the balance of WETH after wrapping

require(wethAmountAfter == wethAmountBefore + msg.value, "WardenSwap:

received unexpected WETH amount");

IERC20(address(weth)).safeTransfer(_receiver, msg.value);

_destAmount = msg.value;

emit Trade(address(ETHER_ERC20), msg.value, address(weth), _destAmount,

msg.sender, _receiver, false, false);

}

Listing 1.7 The improved tradeEthToWeth function

PUBLIC 23

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenSwap1_5_L2.sol

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

function tradeWethToEth(

uint256 _srcAmount,

address _receiver

)

external

nonReentrant

returns(uint256 _destAmount)

{

IERC20(address(weth)).safeTransferFrom(msg.sender, address(this),

_srcAmount);

uint256 etherAmountBefore = address(this).balance;

weth.withdraw(_srcAmount);

uint256 etherAmountAfter = address(this).balance;

// Verify the balance of Ether after unwrapping

require(etherAmountAfter == etherAmountBefore + _srcAmount, "WardenSwap:

received unexpected Ether amount");

(bool success,) = _receiver.call{value: _srcAmount}(""); // Send back ether

to sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

_destAmount = _srcAmount;

emit Trade(address(weth), _srcAmount, address(ETHER_ERC20), _destAmount,

msg.sender, _receiver, false, false);

}

Listing 1.8 The improved tradeWethToEth function

Reassessment

The developer opted to remediate this issue by changing the visibility of the state variable weth from
private to public (line no. 20 in Listing 1.9) instead of modifying the affected functions to trade for minimal
gas use.

The public visibility of the weth enables a user to inspect the legitimacy of the WETH contract. Since the weth

variable can be assigned only once in the constructor (line no. 78 in Listing 1.10), if the weth is initialized
correctly during the smart contract deployment, the weth cannot be updated later.

PUBLIC 24

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenSwap1_5_L2.sol

13

14

15

16

17

18

19

20

21

...(SNIP)...

contract WardenSwap1_5_Aegis is Ownable, ReentrancyGuard {

using SafeERC20 for IERC20;

IWardenCosmoCore public cosmoCore;

IWardenCosmicBrain public cosmicBrain;

IWardenPostTrade public postTrade;

IWETH public immutable weth;

IERC20 private constant ETHER_ERC20 =

IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);

...(SNIP)...

Listing 1.9 The public state variable weth

WardenSwap1_5_L2.sol

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

constructor(

IWardenCosmoCore _cosmoCore,

IWardenCosmicBrain _cosmicBrain,

IWardenPostTrade _postTrade,

IWETH _weth

) {

cosmoCore = _cosmoCore;

cosmicBrain = _cosmicBrain;

postTrade = _postTrade;

weth = _weth;

emit UpdatedWardenCosmoCore(_cosmoCore);

emit UpdatedWardenCosmicBrain(_cosmicBrain);

emit UpdatedWardenPostTrade(_postTrade);

}

Listing 1.10 The contract constructor is the only place that can assign the weth variable

PUBLIC 25

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 2 Potential Lock of Ether

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations receive() L: 583

Detailed Issue

The WardenSwap1_5_Aegis contract implements the receive function in line no. 583. The receive function
receives the Ethers (native ETHs) from the WETH contract (after the best rate swapping) in case a user
wants to receive the Ether as the destination token.

However, the receive function also receives Ethers from EOA (Externally Owned Account) wallets,
resulting in the lock of Ethers by mistake. Even though the contract has implemented the
collectRemainingEther function to enable the platform developer to withdraw the locked Ethers, the user
mistake can be avoided by receiving only the Ethers from the WETH contract.

The code snippet below shows the associated receive function.

WardenSwap1_5_L2.sol

583 receive() external payable {}

Listing 2.1 The receive function

Recommendations

We advise enforcing receiving only the Ethers from the WETH contract by changing the receive function as
follows.

WardenSwap1_5_L2.sol

583

584

585

receive() external payable {

require(msg.sender == address(weth), "WardenSwap: Receive Ether only from

WETH");

}

Listing 2.2 The improved receive function

PUBLIC 26

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

If the receive function is implemented according to our advice, the collectRemainingEther function (line
no's. 572 - 580) can be removed since there will be no Ether withholding in the WardenSwap1_5_Aegis
contract anymore.

Note that there is still a case that the Ether can be enforced to deposit to the WardenSwap1_5_Aegis
contract by using the selfdestruct instruction. However, we consider that is a special case that would not
mistakenly happen by an end-user.

WardenSwap1_5_L2.sol

572

573

574

575

576

577

578

579

580

function collectRemainingEther(

uint256 _amount

)

external

onlyOwner

{

(bool success,) = msg.sender.call{value: _amount}(""); // Send back ether to

sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

}

Listing 2.3 The collectRemainingEther function that can be removed

Reassessment

The developer updated the receive function according to our advice to enforce receiving only the Ethers

from the WETH contract.

PUBLIC 27

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 3 Recommended Updating The PostTrade Contract With Extra Care

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Acknowledged

Associated Files WardenSwap1_5_L2.sol

Locations _postTradeAndCollectFee(IERC20, IERC20, uint256, uint256, address, address, bool)
L: 585 - 615

Detailed Issue

The _postTradeAndCollectFee function (line no's. 585 - 615) is responsible for collecting a trading fee
based on the source and destination token amounts and the user's current WAD tokens holding.

Specifically, the function will call the postTradeAndFee function of the PostTrade contract (line no's. 598 -
606) to calculate the trading fee. Then, the trading fee will be deducted from the destination token (line no's.
608 - 612) by the _collectFee function (line no's. 617 - 631).

In other words, the _postTradeAndCollectFee function will collect a trading fee according to the result from
the postTradeAndFee function of the PostTrade contract. And, the trading fee calculation algorithm may be
subject to change in the future based on Warden Protocol's tokenomics changes.

WardenSwap1_5_L2.sol

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

function _postTradeAndCollectFee(

IERC20 _src,

IERC20 _dest,

uint256 _srcAmount,

uint256 _destAmount,

address _trader,

address _receiver,

bool _isSplit

)

private

returns (uint256 _newDestAmount)

{

// Collect fee

(uint256 fee, address feeWallet) = postTrade.postTradeAndFee(

_src,

_dest,

_srcAmount,

_destAmount,

_trader,

_receiver,

PUBLIC 28

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

605

606

607

608

609

610

611

612

613

614

615

_isSplit

);

if (fee > 0) {

_collectFee(

_dest,

fee,

feeWallet

);

}

return _destAmount - fee;

}

Listing 3.1 The _postTradeAndCollectFee function

Recommendations

Since the trading fee calculation algorithm may be subject to change in the future based on Warden
Protocol's tokenomics changes, the platform developer has to exercise extra care when updating the
PostTrade contract (new contract deployment), such as using the unit and integration testings, to ensure
that the postTradeAndFee function will calculate the accurate trading fee.

Reassessment

The developer considered and acknowledged our recommendation to update the PostTrade contract with
extra care.

PUBLIC 29

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 4 Unchecking Duplication of Trading Route On The addTradingRoute Function

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files libraries/WardenCosmoCore.sol

Locations addTradingRoute(string, IWardenTradingRoute) L: 27 - 40

Detailed Issue

The addTradingRoute function of the WardenCosmoCore contract allows the platform developer to add new
trading routes (line no's. 27 - 40). However, the function lacked verifying the duplication of the trading route
being added, as shown below.

WardenCosmoCore.sol

27

28

29

30

31

32

33

34

35

36

37

38

39

40

function addTradingRoute(

string calldata _name,

IWardenTradingRoute _routingAddress

)

external

onlyOwner

{

_tradingRoutes.push(Route({

name: _name,

enable: true,

route: _routingAddress

}));

emit AddedTradingRoute(msg.sender, _name, _routingAddress,

_tradingRoutes.length - 1);

}

Listing 4.1 The addTradingRoute function

The duplicated trading routes may interfere with the process of best rate querying, such as slowing down a
query or pushing a dispensable load to the best rate query engine.

PUBLIC 30

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend detecting whether the given trading route is duplicated with an existing route. The trading
route can be added only when there is no duplication. Consider the following code snippet.

WardenCosmoCore.sol

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

function checkTradingRouteDuplicate(IWardenTradingRoute _routingAddress) public

{

uint256 length = _tradingRoutes.length;

for (uint256 rid = 0; rid < length; rid++) {

require(_tradingRoutes[rid].route != _routingAddress, "Duplicate trading

route");

}

}

function addTradingRoute(

string calldata _name,

IWardenTradingRoute _routingAddress

)

external

onlyOwner

{

checkTradingRouteDuplicate(_routingAddress);

_tradingRoutes.push(Route({

name: _name,

enable: true,

route: _routingAddress

}));

emit AddedTradingRoute(msg.sender, _name, _routingAddress,

_tradingRoutes.length - 1);

}

Listing 4.2 The improved addTradingRoute function

Reassessment

The developer acknowledged the issue but decided to remain the original code to preserve the minimal gas
use. The developer also took note of adding new trading routes with care.

PUBLIC 31

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 5 Unchecking Duplication of Trading Route On The updateTradingRoute Function

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files libraries/WardenCosmoCore.sol

Locations updateTradingRoute(uint256, string, IWardenTradingRoute) L: 48 - 59

Detailed Issue

The updateTradingRoute function of the WardenCosmoCore contract allows the platform developer to
update an existing trading route (line no's. 48 - 59). However, the function lacked verifying the duplication of
the trading route being updated, as shown below.

WardenCosmoCore.sol

48

49

50

51

52

53

54

55

56

57

58

59

function updateTradingRoute(

uint256 _index,

string calldata _name,

IWardenTradingRoute _route

)

external

onlyOwner

{

_tradingRoutes[_index].name = _name;

_tradingRoutes[_index].route = _route;

emit UpdatedTradingRoute(msg.sender, _name, _route, _index);

}

Listing 5.1 The updateTradingRoute function

The duplicated trading routes may interfere with the process of best rate querying, such as slowing down a
query or pushing a dispensable load to the best rate query engine.

PUBLIC 32

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend detecting whether the given trading route is duplicated with an existing route. The trading
route can be updated only when there is no duplication. Consider the following code snippet.

WardenCosmoCore.sol

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

function checkTradingRouteDuplicate(IWardenTradingRoute _routingAddress) public

{

uint256 length = _tradingRoutes.length;

for (uint256 rid = 0; rid < length; rid++) {

require(_tradingRoutes[rid].route != _routingAddress, "Duplicate trading

route");

}

}

function updateTradingRoute(

uint256 _index,

string calldata _name,

IWardenTradingRoute _route

)

external

onlyOwner

{

checkTradingRouteDuplicate(_route);

_tradingRoutes[_index].name = _name;

_tradingRoutes[_index].route = _route;

emit UpdatedTradingRoute(msg.sender, _name, _route, _index);

}

Listing 5.2 The improved updateTradingRoute function

Reassessment

The developer acknowledged the issue but decided to remain the original code to preserve the minimal gas
use. The developer also took note of updating trading routes with care.

PUBLIC 33

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 6 The Split Volume May Be Inconsistent With The Actual Amount

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations
_split2(uint256[],uint256[],address,uint256,address,address) L:380-406

decodeLearnedIdsAndVolumns(bytes,uint256) L:339-346

Detailed Issue

The relevant split trading functions namely splitTrades, splitTradesC1, splitTradesC2, and
splitTradesC3 are consequently call the internal functions namely _split2 and
decodeLearnedIdsAndVolumns, allowing a user to split volumes of a trading token by percentages.
Therefore, the split volumes should be accumulated to 100. However, the above-mentioned internal
functions do not check the sum of percentage volumes which may lead to an accounting issue when the
percentage of split volumes and the actual token amount are unmatched.

For example, in the splitTrades function, the _volumns variable is an array containing the split
percentages of the _totalSourceAmount variable in which the _learnedIds variable can have 2 or more
elements. There is a requirement that the length of the _learnedIds must be equal to the length of the
_volumns. However, the function does not check that the sum of all percentage elements inside the
_volumns variable should not exceed 100.

PUBLIC 34

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenSwap1_5_L2.sol

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

function splitTrades(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

uint256 _minDestAmount,

address _receiver

)

public

payable

nonReentrant

returns(uint256 _destAmount)

{

require(_learnedIds.length > 0, "WardenSwap: learnedIds can not be empty");

require(_learnedIds.length == _volumns.length, "WardenSwap: learnedIds and

volumns lengths mismatched");

...(SNIP)...

Listing 6.1 Lengths of the _volumns and learnedIds variables are checked,
but the sum of the _volumns variable is not checked

In the _split2 function, the _volumns will be used to split the _totalSrcAmount by its percentages to
actual split amounts. If the sum of all split volumes is more than 100, the actual amount and the percentage
volumes may be inconsistent.

For example, given [70, 40] is the _volumns of the _learnedIds[1, 2] with 1000 _totalSrcAmount.
The first learned ID would split 70% of the _totalSrcAmount, that is 700. The second learned ID uses the
remaining _totalSrcAmount, that is 300 which is inconsistent with the specified 40%.

WardenSwap1_5_L2.sol

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

function _split2(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

// Trade with routes

uint256 amountRemain = _totalSrcAmount;

for (uint i = 0; i < _learnedIds.length; i++) {

PUBLIC 35

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

382

383

384

385

386

387

388

uint256 amountForThisRound;

if (i == _learnedIds.length - 1) {

amountForThisRound = amountRemain;

} else {

amountForThisRound = _totalSrcAmount * _volumns[i] / 100;

amountRemain = amountRemain - amountForThisRound;

}

...(SNIP)...

Listing 6.2 Amount is splitted by percentage volumes on the _split2 function

Recommendations

The amountForThisRound variable should be calculated to be consistent with each split percentage from

the _volumns variable.

Reassessment

The splitTrades function was fixed by checking that the learnedIds length must be equal to the volumes
length - 1.

WardenSwap1_5_L2.sol

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

function splitTrades(

uint256[] memory _learnedIds,

uint256[] memory _volumes,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

uint256 _minDestAmount,

address _receiver

)

public

payable

nonReentrant

returns(uint256 _destAmount)

{

require(_learnedIds.length > 0, "WardenSwap: learnedIds can not be empty");

require(_learnedIds.length == _volumes.length - 1, "WardenSwap: learnedIds

and volumes lengths mismatched");

...(SNIP)...

Listing 6.3 The fixed splitTrades function

PUBLIC 36

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 7 Lack of Some Edge Case In Input Validation

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files tools/WardenDataSerialize.sol

Locations tradeStrategiesSerialize(address, uint256, address, uint256, uint256[], address[])
L: 88 - 148

Detailed Issue

On the tradeStrategiesSerialize function (line no's. 88 - 148), we found that the function lacked
validating the following edge case:

_subRoutes.length - 1 == _correspondentTokens.length

The function could not detect the case when the _correspondentTokens.length is more than
_subRoutes.length. The code snippet below shows the tradeStrategiesSerialize function.

WardenDataSerialize.sol

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

function tradeStrategiesSerialize(

address _src,

uint256 _srcAmount,

address _dest,

uint256 _minDestAmount,

uint256[] calldata _subRoutes,

address[] calldata _correspondentTokens

)

external

view

returns(

bytes memory _data

)

{

require(_srcAmount <= type(uint96).max,

"WardenDataSerialize:tradeStrategiesSerialize _srcAmount is too large, uint96

support only.");

require(_minDestAmount <= type(uint96).max,

"WardenDataSerialize:tradeStrategiesSerialize _minDestAmount is too large,

uint96 support only.");

// tokenLookup

PUBLIC 37

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

uint256 srcIndex = addressTable.lookup(_src);

uint256 destIndex = addressTable.lookup(_dest);

require(srcIndex <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize srcIndex is too large, uint24

support only.");

require(destIndex <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize destIndex is too large, uint24

support only.");

_data = abi.encodePacked(

uint24(srcIndex),

uint24(destIndex),

uint96(_srcAmount),

uint96(_minDestAmount)

);

require(_subRoutes.length < 64, "WardenDataSerialize:tradeStrategiesSerialize

_subRoutes.length is too large, uint6 support only.");

uint8 routeLength = uint8(_subRoutes.length);

// token instruction: 2 (24-bit)

uint8 instructions = 2 << 6;

instructions += routeLength;

_data = abi.encodePacked(

_data,

instructions

);

for (uint256 i = 0; i < routeLength; i++) {

require(_subRoutes[i] <= type(uint16).max,

"WardenDataSerialize:tradeStrategiesSerialize _subRoutes[i] is too large, uint16

support only.");

_data = abi.encodePacked(

_data,

uint16(_subRoutes[i])

);

}

for (uint256 i = 0; i < routeLength - 1; i++) {

address tokenAddress = address(_correspondentTokens[i]);

uint256 tokenId = addressTable.lookup(tokenAddress);

require(tokenId <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize tokenId is too large, uint24

support only.");

_data = abi.encodePacked(

_data,

uint24(tokenId)

);

}

PUBLIC 38

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

148 }

Listing 7.1 The tradeStrategiesSerialize function

Recommendations

We recommend adding the lacking validation logic using the require statement as follows.

WardenDataSerialize.sol

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

function tradeStrategiesSerialize(

address _src,

uint256 _srcAmount,

address _dest,

uint256 _minDestAmount,

uint256[] calldata _subRoutes,

address[] calldata _correspondentTokens

)

external

view

returns(

bytes memory _data

)

{

require(_srcAmount <= type(uint96).max,

"WardenDataSerialize:tradeStrategiesSerialize _srcAmount is too large, uint96

support only.");

require(_minDestAmount <= type(uint96).max,

"WardenDataSerialize:tradeStrategiesSerialize _minDestAmount is too large,

uint96 support only.");

// tokenLookup

uint256 srcIndex = addressTable.lookup(_src);

uint256 destIndex = addressTable.lookup(_dest);

require(srcIndex <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize srcIndex is too large, uint24

support only.");

require(destIndex <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize destIndex is too large, uint24

support only.");

_data = abi.encodePacked(

uint24(srcIndex),

uint24(destIndex),

uint96(_srcAmount),

uint96(_minDestAmount)

);

PUBLIC 39

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

require(_subRoutes.length - 1 == _correspondentTokens.length,

"WardenDataSerialize:tradeStrategiesSerialize routes and tokens length

mismatched");

require(_subRoutes.length < 64, "WardenDataSerialize:tradeStrategiesSerialize

_subRoutes.length is too large, uint6 support only.");

uint8 routeLength = uint8(_subRoutes.length);

// token instruction: 2 (24-bit)

uint8 instructions = 2 << 6;

instructions += routeLength;

_data = abi.encodePacked(

_data,

instructions

);

for (uint256 i = 0; i < routeLength; i++) {

require(_subRoutes[i] <= type(uint16).max,

"WardenDataSerialize:tradeStrategiesSerialize _subRoutes[i] is too large, uint16

support only.");

_data = abi.encodePacked(

_data,

uint16(_subRoutes[i])

);

}

for (uint256 i = 0; i < routeLength - 1; i++) {

address tokenAddress = address(_correspondentTokens[i]);

uint256 tokenId = addressTable.lookup(tokenAddress);

require(tokenId <= type(uint24).max,

"WardenDataSerialize:tradeStrategiesSerialize tokenId is too large, uint24

support only.");

_data = abi.encodePacked(

_data,

uint24(tokenId)

);

}

}

Listing 7.2 The improved tradeStrategiesSerialize function

PUBLIC 40

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Reassessment

The developer added the recommended require statement to check the corresponding lengths of
_subRoutes and _correspondentTokens.

WardenDataSerialize.sol

77

78

79

80

81

82

83

84

85

86

87

88

89

90

108

109

function tradeStrategiesSerialize(

address _src,

uint256 _srcAmount,

address _dest,

uint256 _minDestAmount,

uint256[] calldata _subRoutes,

address[] calldata _correspondentTokens

)

external

view

returns(

bytes memory _data

)

{

...(SNIP)...

require(_subRoutes.length - 1 == _correspondentTokens.length,

"WardenDataSerialize:tradeStrategiesSerialize routes and tokens length

mismatched");

require(_subRoutes.length < 64, "WardenDataSerialize:tradeStrategiesSerialize

_subRoutes.length is too large, uint6 support only.");

...(SNIP)...

Listing 7.3 The fixed tradeStrategiesSerialize function

PUBLIC 41

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 8 The Compiler May Be Susceptible To The Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files

WardenSwap1_5_L2.sol

interface/IWardenCosmicBrainForL2.sol

interface/IWardenCosmoCore0_8.sol

interface/IWardenPostTrade.sol

libraries/IWETH.sol

libraries/IWardenTradingRoute0_8.sol

libraries/WardenCosmoCore.sol

libraries/WardenDataDeserialize.sol

library/arbitrum/IArbAddressTable.sol

library/byte/BytesLib.sol

tools/WardenDataSerialize.sol

Locations

WardenSwap1_5_L2.sol L: 2

IWardenCosmicBrainForL2.sol L: 2

IWardenCosmoCore0_8.sol L: 3

IWardenPostTrade.sol L: 2

IWETH.sol L: 3

IWardenTradingRoute0_8.sol L: 3

WardenCosmoCore.sol L: 3

WardenDataDeserialize.sol L: 10

IArbAddressTable.sol L: 2

BytesLib.sol L: 5

WardenDataSerialize.sol L: 10

Detailed Issue

The WardenSwap smart contracts use an outdated Solidity compiler version which may be susceptible to
publicly disclosed vulnerabilities. The compiler version currently used by the WardenSwap is v0.8.0, which
contains the list of known bugs as the following link:

https://docs.soliditylang.org/en/v0.8.0/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some
attacks further.

PUBLIC 42

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

An example of the Solidity code that does not use the latest patch version (v0.8.8) is shown below.

WardenCosmoCore.sol

1

2

3

4

5

6

7

8

//SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import

"https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.2.0/contracts/ac

cess/Ownable.sol";

import "../interface/IWardenCosmoCore0_8.sol";

contract WardenCosmoCore is Ownable, IWardenCosmoCore {

Listing 8.1 An example of the Solidity code that does not use the latest patch version (v0.8.8)

Recommendations

We recommend using the latest patch version, v0.8.8, that fixes all known bugs.

Reassessment

The developer fixed this issue by specifying the latest patch version, v0.8.8.

PUBLIC 43

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 9 The Compiler Is Not Locked To A Specific Version

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files

WardenSwap1_5_L2.sol

interface/IWardenCosmicBrainForL2.sol

interface/IWardenCosmoCore0_8.sol

interface/IWardenPostTrade.sol

libraries/IWETH.sol

libraries/IWardenTradingRoute0_8.sol

libraries/WardenCosmoCore.sol

libraries/WardenDataDeserialize.sol

library/arbitrum/IArbAddressTable.sol

library/byte/BytesLib.sol

tools/WardenDataSerialize.sol

Locations

WardenSwap1_5_L2.sol L: 2

IWardenCosmicBrainForL2.sol L: 2

IWardenCosmoCore0_8.sol L: 3

IWardenPostTrade.sol L: 2

IWETH.sol L: 3

IWardenTradingRoute0_8.sol L: 3

WardenCosmoCore.sol L: 3

WardenDataDeserialize.sol L: 10

IArbAddressTable.sol L: 2

BytesLib.sol L: 5

WardenDataSerialize.sol L: 10

Detailed Issue

The WardenSwap smart contracts should be deployed with the compiler version used in the development
and testing process.

The compiler version that is not strictly locked via the pragma statement may make the contracts
incompatible against unforeseen circumstances.

An example of the Solidity code that is not locked to a specific version (e.g., using >= or ^ directive) is
shown below.

PUBLIC 44

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenCosmoCore.sol

1

2

3

4

5

6

7

8

//SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import

"https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.2.0/contracts/ac

cess/Ownable.sol";

import "../interface/IWardenCosmoCore0_8.sol";

contract WardenCosmoCore is Ownable, IWardenCosmoCore {

Listing 9.1 An example of the Solidity code that is not locked to a specific version

Recommendations

We recommend locking the pragma version like the example code snippet below.

pragma solidity 0.8.8;

// or

pragma solidity =0.8.8;

contract SemVerFloatingPragmaFixed {

}

Reference: https://swcregistry.io/docs/SWC-103

Reassessment

The developer fixed this issue by locking the pragma version to the latest patch version, v0.8.8.

PUBLIC 45

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 10 Transparency Improvement For The collectRemainingToken Function

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations collectRemainingToken(IERC20, uint256) L: 561 - 569

Detailed Issue

The collectRemainingToken function lets the platform developer collect the leftover ERC20 tokens from
the WardenSwap1_5_Aegis contract. This function is helpful in case a user mistakenly transfers ERC20
tokens to the contract.

However, the function does not implement an event emission after the token collecting, affecting
transparency and traceability. The collectRemainingToken function is shown below.

WardenSwap1_5_L2.sol

561

562

563

564

565

566

567

568

569

function collectRemainingToken(

IERC20 _token,

uint256 _amount

)

external

onlyOwner

{

_token.safeTransfer(msg.sender, _amount);

}

Listing 10.1 The collectRemainingToken function

PUBLIC 46

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend emitting the event CollectedRemainingToken on the collectRemainingToken function to
improve transparency and traceability. See the improved function below.

WardenSwap1_5_L2.sol

561

562

563

564

565

566

567

568

569

570

function collectRemainingToken(

IERC20 _token,

uint256 _amount

)

external

onlyOwner

{

_token.safeTransfer(msg.sender, _amount);

emit CollectedRemainingToken(address(_token), _amount, msg.sender);

}

Listing 10.2 The improved collectRemainingToken function

Reassessment

The developer emitted the CollectedRemainingToken event as per our recommendation.

WardenSwap1_5_L2.sol

571

572

573

574

575

576

577

578

579

580

function collectRemainingToken(

IERC20 _token,

uint256 _amount

)

external

onlyOwner

{

_token.safeTransfer(msg.sender, _amount);

emit CollectedRemainingToken(address(_token), _amount);

}

Listing 10.3 The fixed collectRemainingToken function

PUBLIC 47

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 11 Transparency Improvement For The collectRemainingEther Function

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations collectRemainingEther(uint256) L: 572 - 580

Detailed Issue

The collectRemainingEther function lets the platform developer collect the leftover Ether (native ETH)
from the WardenSwap1_5_Aegis contract. This function is helpful in case a user mistakenly transfers Ethers
to the contract.

However, the function does not implement an event emission after the coin collecting, affecting transparency
and traceability. The collectRemainingEther function is shown below.

WardenSwap1_5_L2.sol

572

573

574

575

576

577

578

579

580

function collectRemainingEther(

uint256 _amount

)

external

onlyOwner

{

(bool success,) = msg.sender.call{value: _amount}(""); // Send back ether to

sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

}

Listing 11.1 The collectRemainingEther function

PUBLIC 48

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend emitting the event CollectedRemainingEther on the collectRemainingEther function to
improve transparency and traceability. See the improved function below.

WardenSwap1_5_L2.sol

572

573

574

575

576

577

578

579

580

581

function collectRemainingEther(

uint256 _amount

)

external

onlyOwner

{

(bool success,) = msg.sender.call{value: _amount}(""); // Send back ether to

sender

require(success, "WardenSwap: Transfer ether back to caller failed.");

emit CollectedRemainingEther(_amount, msg.sender);

}

Listing 11.2 The improved collectRemainingEther function

Reassessment

The developer emitted the CollectedRemainingEther event as per our recommendation.

WardenSwap1_5_L2.sol

583

584

585

586

587

588

589

590

591

592

function collectRemainingEther(

uint256 _amount

)

external

onlyOwner

{

(bool success,) = msg.sender.call{value: _amount}(""); // Send back ether to

receiver

require(success, "WardenSwap: Transfer ether back to receiver failed.");

emit CollectedRemainingEther(_amount);

}

Listing 11.3 The fixed collectRemainingEther function

PUBLIC 49

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 12 Gas Optimization and Readability Improvement On The _split2 Function

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations _split2(uint256[], uint256[], IERC20, uint256, IERC20, address)
L: 381, 383, 387, and 396

Detailed Issue

We found that the source code of the _split2 function can be improved to optimize gas usage and enhance
code readability. The associated line numbers that can be improved include 381, 383, 387, and 396. The
following shows the _split2 function.

WardenSwap1_5_L2.sol

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

function _split2(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

// Trade with routes

uint256 amountRemain = _totalSrcAmount;

for (uint i = 0; i < _learnedIds.length; i++) {

uint256 amountForThisRound;

if (i == _learnedIds.length - 1) {

amountForThisRound = amountRemain;

} else {

amountForThisRound = _totalSrcAmount * _volumns[i] / 100;

amountRemain = amountRemain - amountForThisRound;

}

bytes32 learnedHash = cosmicBrain.learnedHashes(_learnedIds[i]);

(

PUBLIC 50

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

uint256[] memory subRoutes,

IERC20[] memory correspondentTokens

) = cosmicBrain.fetchRoutesAndTokens(learnedHash);

_destAmount = _destAmount +

_tradeStrategies(

_src,

amountForThisRound,

_dest,

subRoutes,

correspondentTokens,

_fromAddress

)

;

}

}

Listing 12.1 The _split2 function that can be improved

Recommendations

We recommend changing the associated source code to optimize gas usage and enhance code readability
as follows.

WardenSwap1_5_L2.sol

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

function _split2(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

// Trade with routes

uint256 amountRemain = _totalSrcAmount;

uint256 learnedIdsLenght = _learnedIds.length;

for (uint i = 0; i < learnedIdsLenght; i++) {

uint256 amountForThisRound;

if (i == learnedIdsLenght - 1) {

amountForThisRound = amountRemain;

} else {

amountForThisRound = _totalSrcAmount * _volumns[i] / 100;

amountRemain -= amountForThisRound;

PUBLIC 51

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

}

bytes32 learnedHash = cosmicBrain.learnedHashes(_learnedIds[i]);

(

uint256[] memory subRoutes,

IERC20[] memory correspondentTokens

) = cosmicBrain.fetchRoutesAndTokens(learnedHash);

_destAmount += _tradeStrategies(

_src,

amountForThisRound,

_dest,

subRoutes,

correspondentTokens,

_fromAddress

)

;

}

}

Listing 12.2 The optimized _split2 function

Reassessment

The developer updated the associated function according to our recommendation. The developer also
renamed the function from _split2 to _loopSplit to describe its functionality better.

WardenSwap1_5_L2.sol

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

function _loopSplit(

uint256[] memory _learnedIds,

uint256[] memory _volumes,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

// Trade with routes

uint256 amountRemain = _totalSrcAmount;

uint256 learnedIdsLenght = _learnedIds.length;

for (uint i = 0; i < learnedIdsLenght; i++) {

uint256 amountForThisRound;

if (i == learnedIdsLenght - 1) {

amountForThisRound = amountRemain;

PUBLIC 52

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

} else {

amountForThisRound = _totalSrcAmount * _volumes[i] / 100;

amountRemain -= amountForThisRound;

}

bytes32 learnedHash = cosmicBrain.learnedHashes(_learnedIds[i]);

(

uint256[] memory subRoutes,

IERC20[] memory correspondentTokens

) = cosmicBrain.fetchRoutesAndTokens(learnedHash);

_destAmount +=

_tradeStrategies(

_src,

amountForThisRound,

_dest,

subRoutes,

correspondentTokens,

_fromAddress

)

;

}

}

Listing 12.3 The fixed _loopSplit function

PUBLIC 53

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 13 Inconsistent Comments/Error Messages With The Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files
WardenSwap1_5_L2.sol

libraries/WardenCosmoCore.sol

Locations
WardenSwap1_5_L2.sol L: 266, 267, 268, 510, 511, 512, 554, 555, 578, 579, and 625

WardenCosmoCore.sol L: 25, 64, and 80

Detailed Issue

We found comments and error messages inconsistent with the source code, leading to misunderstandings
among users.

The associated comments and error messages are in the following line numbers in WardenSwap1_5_L2.sol:
266, 267, 268, 510, 511, 512, 554, 555, 578, 579, and 625, and in the following line numbers in
WardenCosmoCore.sol: 25, 64, and 80. The following shows an example of an inconsistent comment.

WardenSwap1_5_L2.sol

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

function _collectFee(

IERC20 _token,

uint256 _fee,

address _feeWallet

)

private

{

if (ETHER_ERC20 == _token) {

(bool success,) = payable(_feeWallet).call{value: _fee}(""); // Send

back ether to sender

require(success, "Transfer fee of ether failed.");

} else {

_token.safeTransfer(_feeWallet, _fee);

}

emit CollectFee(_token, _feeWallet, _fee);

}

Listing 13.1 An example of an inconsistent comment

PUBLIC 54

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend changing the associated comments and error messages to reflect how the source code is
doing.

Reassessment

The developer changed all associated comments and error messages to describe the source code better.

WardenSwap1_5_L2.sol

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

function _collectFee(

IERC20 _token,

uint256 _fee,

address _feeWallet

)

private

{

if (ETHER_ERC20 == _token) {

(bool success,) = payable(_feeWallet).call{value: _fee}(""); // Send

ether to fee collector

require(success, "Transfer fee of ether failed.");

} else {

_token.safeTransfer(_feeWallet, _fee); // Send token to fee collector

}

emit CollectFee(_token, _feeWallet, _fee);

}

Listing 13.2 An example of updated comments

PUBLIC 55

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 14 Recommended Explicit Trading Route Validation Checks

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files libraries/WardenCosmoCore.sol

Locations WardenCosmoCore.sol L: 12, 17, 56, 73, 89, 104, and 121

Detailed Issue

The implementation of the WardenCosmoCore contract relies on the implicit compiler-generated
bound-checks of the _tradingRoutes array to ensure that the routing index is within the array range [0,
_tradingRoutes.length - 1].

The associated checks include the following line numbers 12, 17, 56, 73, 89, 104, and 121. The code snippet
below is an example of the implicit bound check.

WardenCosmoCore.sol

48

49

50

51

52

53

54

55

56

57

58

59

function updateTradingRoute(

uint256 _index,

string calldata _name,

IWardenTradingRoute _route

)

external

onlyOwner

{

_tradingRoutes[_index].name = _name;

_tradingRoutes[_index].route = _route;

emit UpdatedTradingRoute(msg.sender, _name, _route, _index);

}

Listing 14.1 The updateTradingRoute function that uses the implicit bound check

The explicit sanity checks may be required to enable the contract to handle a revert transaction with a proper
error message for a better debugging solution.

PUBLIC 56

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

We recommend implementing a validateTradingRoute modifier and attaching the modifier to the
associated functions. Consider the following example code snippet.

WardenCosmoCore.sol

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

modifier validateTradingRoute(uint256 _index) {

require (_index < _tradingRoutes.length, "Trading route index out of bounds")

;

_;

}

function updateTradingRoute(

uint256 _index,

string calldata _name,

IWardenTradingRoute _route

)

external

onlyOwner

validateTradingRoute(_index)

{

_tradingRoutes[_index].name = _name;

_tradingRoutes[_index].route = _route;

emit UpdatedTradingRoute(msg.sender, _name, _route, _index);

}

Listing 14.2 The improved updateTradingRoute function that uses the explicit sanity check

With the explicit sanity checks, the contract can handle a revert transaction with a proper error message,
improving a transaction debugging solution.

Reassessment

The developer acknowledged this issue but decided to remain the original code to preserve the minimal gas
use.

PUBLIC 57

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 15 Unchecked Call Return Value

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files WardenSwap1_5_L2.sol

Locations _tradeStrategiesWithSafeGuard(address,uint256,address,uint256,uint256[],address[],
address,uint256) L:276

Detailed Issue

The _tradeStrategiesWithSafeGuard function does not check the return value when performing an
external call which may lead to unexpected behaviors of the application logic.

The external functions will return the data and result. The result indicates whether the call fails or
succeeds which is represented by the following boolean value:

- 0x0 -> false -> fails
- 0x1 -> true -> succeeds

If the return value is not checked, the remaining code would be continuously executed even if the external
call is accidentally or deliberately failed, this may lead to unexpected behaviors of the subsequent logic.

On the IWardenCosmicBrainForL2 interface, the trainTradingPair function returns the boolean value,
_isAlreadyLearned.

IWardenCosmicBrainForL2.sol

14

15

16

17

18

19

20

21

22

function trainTradingPair(

IERC20 _src,

IERC20 _dest,

uint256 _srcAmount,

uint256 _destAmount,

uint256 _learnedId

)

external

returns (bool _isAlreadyLearned);

Listing 15.1 The return value of the trainTradingPair function

PUBLIC 58

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

The trainTradingPair function is called by the _tradeStrategiesWithSafeGuard function but the return
value is not checked.

WardenSwap1_5_L2.sol

196

197

198

199

200

201

202

203

204

205

276

277

278

279

280

281

282

function _tradeStrategiesWithSafeGuard(

IERC20 _src,

uint256 _srcAmount,

IERC20 _dest,

uint256 _minDestAmount,

uint256[] memory _subRoutes,

IERC20[] memory _correspondentTokens,

address _receiver,

uint256 _learnedId

)

...(SNIP)...

cosmicBrain.trainTradingPair(

_src,

_dest,

_srcAmount,

_destAmount,

learnedId

);

...(SNIP)..

Listing 15.2 The trainTradingPair function is called, but the return value is not checked

Recommendations

The return value of the external call should be checked and handled. The function needs to decide and
clarify the expected value returned by the callee. The unexpected return value should be handled
depending on the application logic.

Reassessment

The developer acknowledged this issue but decided to remain the original code.

PUBLIC 59

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 16 Gas Optimization On Redundant Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files libraries/WardenDataDeserialize.sol

Locations

decodeSubRoutesAndCorrespondentTokens(bytes,uint256) L:278-279

lookupSrcDestReceiverAddresses(bytes,uint256) L:439

_decodeSrcMinAmountsLearnedId(bytes,uint256,bool) L:186

decodeLearnedIdsAndVolumns(bytes,uint256) L:329

lookupSrcDestReceiverAddresses(bytes,uint256) L:439

Detailed Issue

The excessive code might consume more gas. The examples of redundant behaviours are as follows:

- The value is recomputed even if it is previously computed.
- The comparison of booleans.
- The unreachable code.

In line 275, 6 bits of the instructions variable are removed by right shifting. Therefore, the 6 most
significant bits after bit shifting will only be 0. Therefore, the AND (&) instruction is unnecessary to zero out
the unwanted bits.

To illustratrate, suppose the 8 bits of the instructions variable is 0xFF. When the code in line 275 is
executed, the instructions will be 0000 0011 which is equal to 0x03. In line 277, the function tries to
zero out the 6 most significant bits to obtain only 2 least significant bits and assign it to the variable
tokenInstruction. However, the 6 most significant bits are already zeroed since the right shifting.
Therefore, zeroing out the unwanted bits by 0x03 is unnecessary.

In addition, in line 278, the instructions variable is shifted to the right to remove the 2 least significant
bits from the instructions itself. But, the instructions variable is not used anymore after this
operation. The code in line 278, therefore, is unnecessary.

PUBLIC 60

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

WardenDataDeserialize.sol

234

235

236

237

238

239

240

241

242

243

244

245

271

272

273

274

275

276

277

278

function decodeSubRoutesAndCorrespondentTokens(

bytes memory _data,

uint256 _cursor

)

public

view

returns (

uint256[] memory _subRoutes, // 16-bit, 65,536 possible

IERC20[] memory _correspondentTokens,

uint256 _newCursor

)

{

...(SNIP)...

uint8 instructions = _data.toUint8(_cursor);

_cursor += 1;

uint256 routeLength = instructions & 0x3F;

instructions = instructions >> 6;

uint8 tokenInstruction = instructions & 0x03;

instructions = instructions >> 2;

...(SNIP)...

Listing 16.1 An example code being redundant when decompressing the variable instructions

Recommendations

Remove the redundant code for saving gas.

In the example case, consider removing AND (&) operation from the last instruction extraction (line no. 277)
since the prior right shift (line no. 275) already removes unwanted bits. The code could be simplified to

uint8 tokenInstruction = instructions;

and remove the unnecessary right shift operation in line 278.

Reassessment

The developer acknowledged this issue but decided to remain the original code.

PUBLIC 61

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 17 Duplicate Function Implementation

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files tools/WardenDataSerialize.sol

Locations toBytes32(bytes, uint256) L: 26 - 35

Detailed Issue

The implementation of the toBytes32 function (line no's. 26 - 35) is duplicated with the function in the
imported BytesLib library. The following shows the duplicated function.

WardenDataSerialize.sol

26

27

28

29

30

31

32

33

34

35

function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns

(bytes32) {

require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");

bytes32 tempBytes32;

assembly {

tempBytes32 := mload(add(add(_bytes, 0x20), _start))

}

return tempBytes32;

}

Listing 17.1 The duplicated toBytes32 function

The toBytes32 function is used in the tradeWithLearnedSerialize function (line no. 84) to convert the
tradeWithLearned data in bytes to bytes32, as shown below.

WardenDataSerialize.sol

49

50

51

52

53

54

55

56

function tradeWithLearnedSerialize(

address _src,

uint256 _srcAmount,

address _dest,

uint256 _minDestAmount,

uint256 _learnedId

)

external

PUBLIC 62

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

view

returns(

bytes32 _compressedData

)

{

require(_srcAmount <= type(uint96).max,

"WardenDataSerialize:tradeWithLearnedSerialize _srcAmount is too large, uint96

support only.");

require(_minDestAmount <= type(uint96).max,

"WardenDataSerialize:tradeWithLearnedSerialize _minDestAmount is too large,

uint96 support only.");

require(_learnedId <= type(uint16).max,

"WardenDataSerialize:tradeWithLearnedSerialize _learnedId is too large, uint16

support only.");

// tokenLookup

uint256 srcIndex = addressTable.lookup(_src);

uint256 destIndex = addressTable.lookup(_dest);

require(srcIndex <= type(uint24).max,

"WardenDataSerialize:tradeWithLearnedSerialize srcIndex is too large, uint24

support only.");

require(destIndex <= type(uint24).max,

"WardenDataSerialize:tradeWithLearnedSerialize destIndex is too large, uint24

support only.");

bytes memory _bytes = abi.encodePacked(

uint24(srcIndex),

uint24(destIndex),

uint96(_srcAmount),

uint96(_minDestAmount),

uint16(_learnedId)

);

require(_bytes.length == 32, "WardenDataSerialize:toBytes32 length is not

32");

return toBytes32(_bytes, 0);

}

Listing 17.2 The tradeWithLearnedSerialize function

PUBLIC 63

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

The mentioned toBytes32 function can be removed, and we can use the function in the imported BytesLib

library instead, as shown below.

WardenDataSerialize.sol

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

function tradeWithLearnedSerialize(

address _src,

uint256 _srcAmount,

address _dest,

uint256 _minDestAmount,

uint256 _learnedId

)

external

view

returns(

bytes32 _compressedData

)

{

require(_srcAmount <= type(uint96).max,

"WardenDataSerialize:tradeWithLearnedSerialize _srcAmount is too large, uint96

support only.");

require(_minDestAmount <= type(uint96).max,

"WardenDataSerialize:tradeWithLearnedSerialize _minDestAmount is too large,

uint96 support only.");

require(_learnedId <= type(uint16).max,

"WardenDataSerialize:tradeWithLearnedSerialize _learnedId is too large, uint16

support only.");

// tokenLookup

uint256 srcIndex = addressTable.lookup(_src);

uint256 destIndex = addressTable.lookup(_dest);

require(srcIndex <= type(uint24).max,

"WardenDataSerialize:tradeWithLearnedSerialize srcIndex is too large, uint24

support only.");

require(destIndex <= type(uint24).max,

"WardenDataSerialize:tradeWithLearnedSerialize destIndex is too large, uint24

support only.");

bytes memory _bytes = abi.encodePacked(

uint24(srcIndex),

uint24(destIndex),

uint96(_srcAmount),

uint96(_minDestAmount),

uint16(_learnedId)

);

require(_bytes.length == 32, "WardenDataSerialize:toBytes32 length is not

PUBLIC 64

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

82

83

84

32");

return _bytes.toBytes32(0);

}

Listing 17.3 The improved tradeWithLearnedSerialize function

Using the standard BytesLib library function will benefit an aspect of code maintenance and bug fixes.

Reassessment

The developer updated the associated source code as per our recommendation.

PUBLIC 65

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 18 Generic Typographic Error

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations

For example:
_split2(uint256[],uint256[],address,uint256,address,address) L:368

_splitTradesWithSafeGuard(uint256[],uint256[],address,uint256,address) L:411

Detailed Issue

Some variables and comments contain typos which may lead to the name confusion, or slightly increase
the time when debugging or maintaining the source code.

For example, the _volumns or _volumn is misspelled in several locations.

WardenSwap1_5_L2.sol

409

410

411

412

413

414

415

416

417

418

439

440

441

442

443

444

445

446

function _splitTradesWithSafeGuard(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest

)

private

returns(uint256 _destAmount)

{

...(SNIP)...

_destAmount = _split2(

_learnedIds,

_volumns,

adjustedSrc,

_totalSrcAmount,

adjustedDest,

fromAddress

);

Listing 18.1 An example variable that is misspelled

PUBLIC 66

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Recommendations

Review the variables and comments and revise the incorrect or typographical words. In the example case,
consider renaming the variable from “_volumns” to “_volumes” instead.

Reassessment

The misspelled variables were renamed to “volume” or “volumes”.

WardenSwap1_5_L2.sol

419

420

421

422

423

424

425

426

427

428

449

450

451

452

453

454

455

456

function _splitTradesWithSafeGuard(

uint256[] memory _learnedIds,

uint256[] memory _volumes,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest

)

private

returns(uint256 _destAmount)

{

...(SNIP)...

_destAmount = _loopSplit(

_learnedIds,

_volumes,

adjustedSrc,

_totalSrcAmount,

adjustedDest,

fromAddress

);

Listing 18.2 An example variable that was renamed

PUBLIC 67

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

No. 19 Misleading Function Name

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files WardenSwap1_5_L2.sol

Locations _split2(uint256[], uint256[], IERC20, uint256, IERC20, address) L: 366 - 407

Detailed Issue

The _split2 function splits trading into multiple trading routes according to the length of the _learnedIds
variable (line no. 381). The function actually supports multiple trading routes, which can be more than two
routes. At this point, it comes to our attention that the function name, _split2, is misleading. The misleading
function name may hinder the source code maintenance process as well as the understanding of the source
code.

WardenSwap1_5_L2.sol

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

function _split2(

uint256[] memory _learnedIds,

uint256[] memory _volumns,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

// Trade with routes

uint256 amountRemain = _totalSrcAmount;

for (uint i = 0; i < _learnedIds.length; i++) {

uint256 amountForThisRound;

if (i == _learnedIds.length - 1) {

amountForThisRound = amountRemain;

} else {

amountForThisRound = _totalSrcAmount * _volumns[i] / 100;

amountRemain = amountRemain - amountForThisRound;

}

bytes32 learnedHash = cosmicBrain.learnedHashes(_learnedIds[i]);

PUBLIC 68

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

(

uint256[] memory subRoutes,

IERC20[] memory correspondentTokens

) = cosmicBrain.fetchRoutesAndTokens(learnedHash);

_destAmount = _destAmount +

_tradeStrategies(

_src,

amountForThisRound,

_dest,

subRoutes,

correspondentTokens,

_fromAddress

)

;

}

}

Listing 19.1 The _split2 function

Recommendations

We recommend renaming the _split2 function to reflect its functionality to improve the source code
maintenance process as well as the understanding of the source code.

Reassessment

The _split2 function was renamed to _loopSplit to describe its functionality better.

WardenSwap1_5_L2.sol

375

376

377

378

379

380

381

382

383

384

385

386

387

function _loopSplit(

uint256[] memory _learnedIds,

uint256[] memory _volumes,

IERC20 _src,

uint256 _totalSrcAmount,

IERC20 _dest,

address _fromAddress

)

private

returns (

uint256 _destAmount

)

{

...(SNIP)...

Listing 19.2 The renamed function, _loopSplit

PUBLIC 69

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

Appendix

About Us
Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of
cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract
security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in areas of private and
public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes
recommendations on smart contracts' security and gas optimization to bring the most benefit to users and
platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 70

Warden Finance - Aegis and Aegis L2 - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 71

