

Vonder Finance - Token and Farm - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
Scope of Work 3
Auditors 4
Disclaimer 4
Audit Result Summary 5

Methodology 6
Audit Items 7
Risk Rating 9

Findings 10
Review Findings Summary 10
Detailed Result 11

Appendix 47
About Us 47
Contact Information 47
References 48

PUBLIC 2

Vonder Finance - Token and Farm - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the Token and Farm features.
This audit report was published on August 24, 2021. The audit scope is limited to the Token and Farm
features. Our security best practices strongly recommend that the Vonder Finance team conduct a full
security audit for both on-chain and off-chain components of its infrastructure and their interaction. A
comprehensive examination has been performed during the audit process utilizing Valix’s Formal Verification,
Static Analysis, and Manual Review techniques.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Vonder Finance protocol.
The scope is limited to the Token and Farm features and their related smart contracts.

The security audit covered the components at this specific state:

Item Description

Components
▪ Vonder MasterChef smart contract
▪ VonderToken smart contract
▪ Imported associated smart contracts

GitHub Repository ▪ https://github.com/vonderfinance/vonder-masterchef

Commit ▪ edacb5cb3ed72546e706043bfe3078a63cb07fbe

Reassessment Commit ▪ 36dec4e96394925af233ea08c0490e4f18edf3ac

Audited Files ▪ MasterChef.sol
▪ VonderToken.sol

Excluded Files/Contracts -

Remark: Our security best practices strongly recommend that the Vonder Finance team conduct a full
security audit for both on-chain and off-chain components of its infrastructure and the interaction between
them.

PUBLIC 3

Vonder Finance - Token and Farm - Smart Contract Audit

Auditors

Phuwanai Thummavet
Sumedt Jitpukdebodin
Keerati Torach
Boonpoj Thongakaraniroj

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a
single point in time. As such, the scope was limited to current known risks during the work period. The review
does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred
percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided
code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or
“endorsement” of any particular project. This audit report should also not be used as investment advice nor
provide any legal compliance.

PUBLIC 4

Vonder Finance - Token and Farm - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the Token and
Farm features have sufficient security protections to be safe for use.

Initially, Valix was able to identify 14 issues that were categorized from the “Critical” to “Informational” risk
level in the given timeframe of the assessment. On the reassessment, all high and medium risk issues were
fixed. For the acknowledged issues, the Vonder team acknowledged each issue but decided to remain the
original code. Below is the breakdown of the vulnerabilities found and their associated risk rating for each
assessment conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

Token and Farm - 4 2 5 3 - 0 0 5 3

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 5

Vonder Finance - Token and Farm - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test
Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual
and automated review approaches can be mixed and matched, including business logic analysis in terms of
the malicious doer's perspective. Using automated scanning tools to navigate or find offending software
patterns in the codebase along with a purely manual or semi-automated approach, where the analyst
primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● ​​Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 6

Vonder Finance - Token and Farm - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 7

Vonder Finance - Token and Farm - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 8

Vonder Finance - Token and Farm - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,
Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are
presented in the table.

Risk Level Definition

Critical The code implementation does not match the specification, and it could disrupt the
platform.

High The code implementation does not match the specification, or it could result in the loss
of funds for contract owners or users.

Medium The code implementation does not match the specification under certain conditions, or it
could affect the security standard by losing access control.

Low The code implementation does not follow best practices or use suboptimal design
patterns, which may lead to security vulnerabilities further down the line.

Informational Findings in this category are informational and may be further improved by following best
practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as
illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.
● Impact measures the technical loss and business damage of a successful attack.
● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels
"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the
risk to an acceptable level.

PUBLIC 9

Vonder Finance - Token and Farm - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Voting Amplification High Fixed Not in use

2 Voting Displacement High Fixed Not in use

3 Contract Parameters Can Be Altered By The
Platform Developer Without Timelock High Partially Fixed In use

4 Redelegation Failure High Fixed Not in use

5 No Maximum Supply Minting Check Medium Fixed In use

6 No LP Token Adding After Deposit Medium Fixed In use

7 Emission Rate Update May Fail Low Acknowledged In use

8 DevAddress Reassignment May Fail Low Acknowledged In use

9 FeeAddress Reassignment May Fail Low Acknowledged In use

10 The Compiler May Be Susceptible To The Publicly
Disclosed Bugs Low Acknowledged In use

11 The Compiler Is Not Locked To A Specific Version Low Acknowledged In use

12 Same LP Token May Be Added More Than Once Informational Acknowledged In use

13 The Function Name With internal Visibility Is Not
Complied With The Naming Convention Informational Acknowledged In use

14 Public Functions That Could Be Declared As
external

Informational Acknowledged In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 10

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Result

This section provides our issues found in detail.

No. 1 Voting Amplification

Risk High
Likelihood High

Impact Medium

Functionality is
in use Not in use Status Fixed

Associated Files VonderToken.sol

Locations _moveDelegates(address, address, uint256) L:874 - 892

Description

VON token was designed to be a governance token. Therefore, VON token holders can vote on the
desired representative or proposal by delegating their tokens to. The _moveDelegates function would be
executed during the delegation/voting process to transfer votes (represented by VON tokens) from each
delegator to a representative.

However, the _moveDelegates function does not lock up the delegated VON tokens inside the contract.
This delegation mechanism potentially causes a double-spending issue leading to a Sybil attack which
amplifies the voting power improperly.

Consider the following voting amplification attack scenario:

1. Attacker #1 has 100 tokens and delegates his vote to Bob (the representative). Bob gains 100
votes now.

2. Attacker #1 transfers his 100 tokens to Attacker #2.

3. Attacker #2 delegates the obtained 100 tokens to Bob. Now, Bob captures 200 votes.

4. Attackers can easily amplify Bob’s votes by performing Steps 2 and 3 repeatedly.

Recommendations

We recommend two possible solutions. The first solution is improving the VonderToken contract to lock
away the delegated VON tokens inside until the voting or delegating period is complete. The VonderToken
contract also has to record the number of votes of each delegator correctly so that the contract can check
and move each delegator's votes precisely when re-delegating.

Another solution is implementing another voting contract and using VON tokens as the contract's voting
tokens. The voting contract also needs to lock up and record the delegated VON tokens correctly
nonetheless.

PUBLIC 11

Vonder Finance - Token and Farm - Smart Contract Audit

Platform Developer Response

The affected voting functionality was removed from the VonderToken contract.

Detailed Issue

This issue enables attackers to massively amplify their votes on any desired representative or proposals with
a minimal attack cost.

VonderToken.sol

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal

{

if (srcRep != dstRep && amount > 0) {

if (srcRep != address(0)) {

// decrease old representative

uint32 srcRepNum = numCheckpoints[srcRep];

uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum -

1].votes : 0;

uint256 srcRepNew = srcRepOld.sub(amount);

_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

}

if (dstRep != address(0)) {

// increase new representative

uint32 dstRepNum = numCheckpoints[dstRep];

uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum -

1].votes : 0;

uint256 dstRepNew = dstRepOld.add(amount);

_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

}

}

}

The code snippet above shows the _moveDelegates function that is the root cause of the issue. This
function is executed during the voting delegation process to move the delegator’s votes to the
representative. In other words, the amount of the votes (represented by the VON tokens) from a delegator
will be increased to the representative (line no’s. 886–889).

Although the _moveDelegates function can move the delegator's votes to the targeting representative
correctly, the function does not lock up the delegated VON tokens inside the contract.

This design flaw opens the room for a double-spending attack in which attackers can create Sybil
accounts leading to the voting amplification.

PUBLIC 12

Vonder Finance - Token and Farm - Smart Contract Audit

Voting amplification attack

Consider the voting amplification attack scenario in the figure above.

1. Attacker #1 initially has 100 tokens and delegates his vote to Bob

2. Bob now collects 100 votes

3. Attacker #1 transfers his 100 tokens to Attacker #2

4. Attacker #2 delegates the obtained 100 tokens to Bob

5. Bob’s collected votes have been amplified to 200

The attackers can easily amplify Bob’s votes by performing Steps 3 and 4 repeatedly.

Reassessment

The affected voting functionality was removed from the VonderToken contract.

PUBLIC 13

Vonder Finance - Token and Farm - Smart Contract Audit

No. 2 Voting Displacement

Risk High
Likelihood High

Impact Medium

Functionality
is in use Not in use Status Fixed

Affected Files VonderToken.sol

Locations
_delegate(address, address) L:862 - 872
_moveDelegates(address, address, uint256) L:874 - 892

Description

A voter/delegator (VON token holder) can re-delegate his votes to another representative by calling the
external delegate or delegateBySig function. The external function will subsequently call the internal
_delegate function which will obtain a delegator balance.

The _moveDelegates function is then invoked to move the delegator's votes (the previously obtained
delegator balance) from the current to the new representative. Unfortunately, this redelegation mechanism
allows attackers to perform the votes withdrawal over their previous delegation, potentially leading to an
attack that displaces other voters' votes.

Consider the following voting displacement scenario:

1. Bob (the representative) received 450 votes from other voters.

2. Attacker #1 has 1 token and delegates his vote to Bob. Bob now has 451 votes.

3. Attacker #2 transfers 450 tokens to Attacker #1. Attacker #1 now has 451 tokens in his wallet.

4. Attacker #1 re-delegates his vote from Bob to Attacker #2. Since the current token balance of
Attacker #1 is 451, the _moveDelegate function moves 451 votes from Bob to Attacker #2. Total
votes from other voters were displaced unexpectedly.

Recommendations

We recommend two possible solutions. The first solution is improving the VonderToken contract to lock
away the delegated VON tokens inside until the voting or delegating period is complete. The VonderToken
contract also has to record the number of votes of each delegator correctly so that the contract can check
and move each delegator's votes precisely when re-delegating.

Another solution is implementing another voting contract and using VON tokens as the contract's voting
tokens. The voting contract also needs to lock up and record the delegated VON tokens correctly
nonetheless.

Platform Developer Response

The affected voting functionality was removed from the VonderToken contract.

PUBLIC 14

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

This issue allows attackers to take out other voters' votes.

VonderToken.sol

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

function _delegate(address delegator, address delegatee)

internal

{

address currentDelegate = _delegates[delegator];

uint256 delegatorBalance = balanceOf(delegator); // balance of underlying

VONs (not scaled);

_delegates[delegator] = delegatee;

emit DelegateChanged(delegator, currentDelegate, delegatee);

_moveDelegates(currentDelegate, delegatee, delegatorBalance);

}

function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal

{

if (srcRep != dstRep && amount > 0) {

if (srcRep != address(0)) {

// decrease old representative

uint32 srcRepNum = numCheckpoints[srcRep];

uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum -

1].votes : 0;

uint256 srcRepNew = srcRepOld.sub(amount);

_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

}

if (dstRep != address(0)) {

// increase new representative

uint32 dstRepNum = numCheckpoints[dstRep];

uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum -

1].votes : 0;

uint256 dstRepNew = dstRepOld.add(amount);

_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

}

}

}

The code snippet above shows the _delegate and _moveDelegates functions that are the root cause of the
issue. During the redelegation process, the _delegate function would be executed. This function gets the
delegator's current representative (line no. 865). Then, the function reads the delegator's current VON
balance (line no. 866). Next, the function changes the representative to the new one (line no. 867).

The delegator’s VON balance (from line no. 866) is then passed into the _moveDelegates function (line no.
871) and becomes the function parameter, amount.

PUBLIC 15

Vonder Finance - Token and Farm - Smart Contract Audit

In the _moveDelegates function, the old representative’s votes are decreased by the variable amount (line
no. 880). The exact amount is also increased to the new representative’s votes (line no. 888). In other words,
the votes will be moved from the old to the new representative.

Since the amount of the moved votes is determined by the delegator’s current VON balance, not the
previously delegated VONs, the attackers can manipulate the incorrect number of the votes
movement.

To conclude, the delegator's VON balance (line no. 866) is the root cause of the issue.

Voting displacement attack

PUBLIC 16

Vonder Finance - Token and Farm - Smart Contract Audit

Consider the voting displacement scenario illustrated in the figure above.

1. Alice, Charles, and Dan delegate 100, 50, and 300 tokens respectively to Bob

2. Bob collects 450 votes

3. Attacker #1 initially has 1 token and delegates his vote to Bob

4. Bob collects 451 votes for now

5. Attacker #2 transfers his 450 tokens to Attacker #1

6. Attacker #1 now has 451 tokens in his wallet

7. Attacker #1 re-delegates his vote to Attacker #2

8. Bob’s collected votes are improperly removed by 451 (i.e., the current token balance of Attacker #1)
and finally become 0

9. Attacker #2 eventually receives the manipulated 451 votes

The 450 votes (delegated by Alice, Charles, and Dan) to Bob are improperly removed at Step 8 due to the
design flaw explained earlier. Hence, the attackers can use this voting displacement attack to dismiss
the votes of other voters easily.

Reassessment

The affected voting functionality was removed from the VonderToken contract.

PUBLIC 17

Vonder Finance - Token and Farm - Smart Contract Audit

No. 3 Contract Parameters Can Be Altered By The Platform Developer Without Timelock

Risk High
Likelihood Medium

Impact High

Functionality
is in use In use Status Partially Fixed

Affected Files MasterChef.sol

Locations -

Description

The MasterChef contract is owned by an Externally Owned Account (EOA) without having an intermediate
contract to prevent an administrative user from executing an arbitrary function immediately. The state
variables such as vonPerBlock (emission rate) could be updated and effective immediately without user
notification.

Recommendations

Implement the Timelock contract and transfer the ownership of the MasterChef contract to the Timelock
contract.

The linkage of the associated contracts should be as follows:

Deployer or multi-signature contract --> Timelock --> MasterChef

Specifically, the MasterChef is owned by the Timelock, whereas the TImelock is owned by a deployer
(admin).

It is acceptable to use an externally owned account as an administrator of the Timelock.
For best practices, a multi-signature contract should be an administrator of the Timelock.

Reference: https://docs.gnosis.io/safe/docs/contracts_architecture/

Platform Developer Response

The developer implemented the Timelock contract for resolving this issue.

PUBLIC 18

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

According to the MasterChef contract on the BKCScan
(https://bkcscan.com/address/0x60326f6Ad05adeE2ffD42B0c05c68Ead535B104E), its owner address was
0x4d240ee749ef84334c607d94969a2d2502404b72.

Apparently, the owner of the MasterChef contract was an Externally Owned Account (EOA) wallet:
https://bkcscan.com/address/0x4d240eE749ef84334C607d94969a2D2502404B72.

PUBLIC 19

https://bkcscan.com/address/0x60326f6Ad05adeE2ffD42B0c05c68Ead535B104E
https://bkcscan.com/address/0x4d240eE749ef84334C607d94969a2D2502404B72

Vonder Finance - Token and Farm - Smart Contract Audit

Since the EOA account (admin) can immediately change and affect the platform's parameters, users cannot
have time to inspect any parameter changes.

For example, the state variable vonPerBlock could be changed and take effect immediately.

MasterChef.sol

464

465

466

467

function updateEmissionRate(uint256 _vonPerBlock) public onlyOwner {

massUpdatePools();

vonPerBlock = _vonPerBlock;

}

Reassessment

The developer implemented the Timelock contract for resolving this issue.

Timelock.sol

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import './libs/SafeMath.sol';

contract Timelock {

using SafeMath for uint;

event NewAdmin(address indexed newAdmin);

event NewPendingAdmin(address indexed newPendingAdmin);

event NewDelay(uint indexed newDelay);

event CancelTransaction(bytes32 indexed txHash, address indexed target, uint

value, string signature, bytes data, uint eta);

event ExecuteTransaction(bytes32 indexed txHash, address indexed target, uint

value, string signature, bytes data, uint eta);

event QueueTransaction(bytes32 indexed txHash, address indexed target, uint

value, string signature, bytes data, uint eta);

uint public constant GRACE_PERIOD = 14 days;

uint public constant MINIMUM_DELAY = 6 hours;

uint public constant MAXIMUM_DELAY = 30 days;

...

PUBLIC 20

Vonder Finance - Token and Farm - Smart Contract Audit

However, we found that the setPendingAdmin function of the Timelock contract allows the developer to set
the state variable pendingAdmin without time delay (line no’s. 63 - 66) for the first call of the admin address
changes. In other words, the developer can change the admin address for the first time immediately.

Timelock.sol

58

59

60

61

62

63

64

65

66

67

68

69

function setPendingAdmin(address pendingAdmin_) public {

// allows one time setting of admin for deployment purposes

if (admin_initialized) {

require(msg.sender == address(this), "Timelock::setPendingAdmin: Call

must come from Timelock.");

} else {

require(msg.sender == admin, "Timelock::setPendingAdmin: First call must

come from admin.");

admin_initialized = true;

}

pendingAdmin = pendingAdmin_;

emit NewPendingAdmin(pendingAdmin);

}

We notified this concern to the Vonder team. The team acknowledged our concern but decided to make no
further improvements.

PUBLIC 21

Vonder Finance - Token and Farm - Smart Contract Audit

No. 4 Redelegation Failure

Risk High
Likelihood High

Impact Medium

Functionality
is in use Not in use Status Fixed

Affected Files VonderToken.sol

Locations
_delegate(address, address) L:862 - 872
_moveDelegates(address, address, uint256) L:874 - 892

Description

A voter/delegator (VON token holder) can re-delegate his votes to another representative by calling the
external delegate or delegateBySig function. The external function will subsequently call the internal
_delegate function which will obtain a delegator balance.

The _moveDelegates function is then invoked to move the delegator's votes (the previously obtained
delegator balance) from the current to the new representative.

There are some situations where the voter/delegator cannot re-delegate their votes. Consider the
following redelegation scenario:

1. Alice has 100 tokens and delegates her vote to Bob.

2. Alice receives additional 10 tokens from her yield farming.

3. If Alice attempts to re-delegate her 110 tokens to Dan, the transaction will fail since the
_moveDelegates function will try to un-delegate 110 (not 100) votes from Bob, causing the sub
function of the SafeMath library to revert.

Recommendations

We recommend two possible solutions. The first solution is improving the VonderToken contract to lock
away the delegated VON tokens inside until the voting or delegating period is complete. The VonderToken
contract also has to record the number of votes of each delegator correctly so that the contract can check
and move each delegator's votes precisely when re-delegating.

Another solution is implementing another voting contract and using VON tokens as the contract's voting
tokens. The voting contract also needs to lock up and record the delegated VON tokens correctly
nonetheless.

Platform Developer Response

The affected voting functionality was removed from the VonderToken contract.

PUBLIC 22

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

This issue causes a transaction revert during the redelegation process, which can affect every regular voter.

VonderToken.sol

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

function _delegate(address delegator, address delegatee)

internal

{

address currentDelegate = _delegates[delegator];

uint256 delegatorBalance = balanceOf(delegator); // balance of underlying

VONs (not scaled);

_delegates[delegator] = delegatee;

emit DelegateChanged(delegator, currentDelegate, delegatee);

_moveDelegates(currentDelegate, delegatee, delegatorBalance);

}

function _moveDelegates(address srcRep, address dstRep, uint256 amount) internal

{

if (srcRep != dstRep && amount > 0) {

if (srcRep != address(0)) {

// decrease old representative

uint32 srcRepNum = numCheckpoints[srcRep];

uint256 srcRepOld = srcRepNum > 0 ? checkpoints[srcRep][srcRepNum -

1].votes : 0;

uint256 srcRepNew = srcRepOld.sub(amount);

_writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);

}

if (dstRep != address(0)) {

// increase new representative

uint32 dstRepNum = numCheckpoints[dstRep];

uint256 dstRepOld = dstRepNum > 0 ? checkpoints[dstRep][dstRepNum -

1].votes : 0;

uint256 dstRepNew = dstRepOld.add(amount);

_writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);

}

}

}

The code snippet above points out the root cause of the issue; the _delegate and _moveDelegates
functions. The _moveDelegates function will move a certain amount of votes from the old (line no’s.
878–881) to the new representative (line no’s. 886–889). The votes movement amount is determined by the
delegator’s current VON balance (line no. 866) in the _delegate function.

During the re-delegation process, the transaction would be reverted in line no. 880 if the delegator
has more VON balance than the votes previously recorded.

PUBLIC 23

Vonder Finance - Token and Farm - Smart Contract Audit

More specifically, the _moveDelegates function would attempt to deduct the surpassing number from the
exact number recorded, causing an integer underflow error. Thus, the sub function of the SafeMath library
would revert the transaction.

Redelegation failure

The redelegation failure scenario can be depicted using the figure above.

1. Alice initially has 100 tokens and delegates her vote to Bob

2. Bob obtains 100 votes now

3. Charles transfers his 50 tokens to Alice

4. Alice now has 150 tokens in her wallet

5. Alice tries to re-delegate her votes to another representative, Dan

6. The redelegation transaction is reverted due to the integer underflow error

PUBLIC 24

Vonder Finance - Token and Farm - Smart Contract Audit

Three possible actions can cause Alice’s transaction to revert.

1. Alice receives additional tokens from the token transfer (from others)

2. Alice receives additional tokens from the token buying

3. Alice receives additional tokens from the yield farming

This issue can affect both the voting redelegation and voting withdrawal transactions invoked by a regular
voter.

Reassessment

The affected voting functionality was removed from the VonderToken contract.

PUBLIC 25

Vonder Finance - Token and Farm - Smart Contract Audit

No. 5 No Maximum Supply Minting Check

Risk Medium
Likelihood Medium

Impact Medium

Functionality
is in use In use Status Fixed

Affected Files VonderToken.sol

Locations
mint(address, uint256) L: 690-693
_mint(address, uint256) L: 537-543

Description

According to Vonder's official documentation, the VON maximum supply is 101,051,200. The MasterChef
contract is responsible for minting the new VON tokens to distribute as a reward to the users staking the
liquidity pools.

However, the Vonder developer did not expressly declare the VON maximum supply in the VonderToken
contract. Over time, the MasterChef contract can mint excessive tokens.

Reference: https://docs.vonder.finance/tokenomics-1/tokenomics/vonder-emission-schedule

Recommendations

Implement the statement to check whether the totalSupply is more than the maximum supply or not.
The statement should be checked before minting the new VON token. For example, consider the
pseudo-code below:

uint private _maxSupply = 101051200e18;

function mint(address _to, uint256 _amount) public onlyOwner {
require(totalSupply().add(_amount) <= _maxSupply, "VON exceeds maxSupply");
_mint(_to, _amount);
_moveDelegates(address(0), _delegates[_to], _amount);

}

Platform Developer Response

The developer implemented the maximum supply check to resolve this issue.

PUBLIC 26

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

On the updatePool function, new VON tokens will be minted to the devaddr and the MasterChef contract
itself by calling the mint function of the VonderToken contract.

MasterChef.sol

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

function updatePool(uint256 _pid) public {

PoolInfo storage pool = poolInfo[_pid];

if (block.number <= pool.lastRewardBlock) {

return;

}

uint256 lpSupply = pool.lpToken.balanceOf(address(this));

if (lpSupply == 0 || pool.allocPoint == 0) {

pool.lastRewardBlock = block.number;

return;

}

uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);

uint256 vonReward =

multiplier.mul(vonPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

von.mint(devaddr, vonReward.div(10));

von.mint(address(this), vonReward);

pool.accVonPerShare =

pool.accVonPerShare.add(vonReward.mul(1e12).div(lpSupply));

pool.lastRewardBlock = block.number;

}

The mint function of the VonderToken contract calls the internal _mint function.

VonderToken.sol

500

501

502

503

function mint(uint256 amount) public onlyOwner returns (bool) {

_mint(_msgSender(), amount);

return true;

}

PUBLIC 27

Vonder Finance - Token and Farm - Smart Contract Audit

According to Vonder's official documentation, the VON maximum supply is 101,051,200. In the _mint

function, however, there is no maximum supply checking. Therefore, the MasterChef contract can mint
excessive tokens over time.

VonderToken.sol

537

538

539

540

541

542

543

function _mint(address account, uint256 amount) internal {

require(account != address(0), 'BEP20: mint to the zero address');

_totalSupply = _totalSupply.add(amount);

_balances[account] = _balances[account].add(amount);

emit Transfer(address(0), account, amount);

}

Reassessment

The maximum supply is checked in the mint function of the VonderToken contract.

VonderToken.sol

547

548

549

550

551

552

553

554

555

556

557

558

559

560

contract VonderToken is BEP20('Extended VONDER Token', 'xVON') {

uint256 private _cap = 101051200e18; //101,051,200

function cap() public view returns (uint256) {

return _cap;

}

// @notice Creates `_amount` token to `_to`. Must only be called by the owner

(MasterChef).

function mint(address _to, uint256 _amount) public onlyOwner {

require(totalSupply().add(_amount) <= cap(), "cap exceeded");

_mint(_to, _amount);

// _moveDelegates(address(0), _delegates[_to], _amount);

}

}

PUBLIC 28

Vonder Finance - Token and Farm - Smart Contract Audit

No. 6 No LP Token Adding After Deposit

Risk Medium
Likelihood Low

Impact High

Functionality
is in use In use Status Fixed

Affected Files MasterChef.sol

Locations deposit(uint256, uint256) L:389-411

Description

On the deposit function, if the state variable pool.depositFeeBP was set to 10000, the computed
depositFee variable will equal the user's deposit _amount (line no. 402). The total deposit amount will be
transferred to the fee address as a deposit fee (line no. 403). Thus, no LP token will be left adding to the
user account (line no. 404).

Recommendations

Limit a maximum cap for the depositFeeBP variable to less than 10000. For example, if the maximum cap
is 5000. Therefore, the maximum deposit fee is 50%.

Platform Developer Response

The developer set the maximum cap of the depositFeeBP variable to 5000. That is, the maximum deposit
fee is 50%.

PUBLIC 29

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

On the deposit function, if the state variable pool.depositFeeBP was set to 10000, the computed
depositFee variable will equal the user's deposit _amount (line no. 402). The total deposit amount will be
transferred to the fee address as a deposit fee (line no. 403). Thus, no LP token will be left adding to the user
account (line no. 404).

MasterChef.sol

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

function deposit(uint256 _pid, uint256 _amount) public {

PoolInfo storage pool = poolInfo[_pid];

UserInfo storage user = userInfo[_pid][msg.sender];

updatePool(_pid);

if (user.amount > 0) {

uint256 pending =

user.amount.mul(pool.accVonPerShare).div(1e12).sub(user.rewardDebt);

if(pending > 0) {

safeVonTransfer(msg.sender, pending);

}

}

if(_amount > 0) {

pool.lpToken.safeTransferFrom(address(msg.sender), address(this),

_amount);

if(pool.depositFeeBP > 0){

uint256 depositFee = _amount.mul(pool.depositFeeBP).div(10000);

pool.lpToken.safeTransfer(feeAddress, depositFee);

user.amount = user.amount.add(_amount).sub(depositFee);

}else{

user.amount = user.amount.add(_amount);

}

}

user.rewardDebt = user.amount.mul(pool.accVonPerShare).div(1e12);

emit Deposit(msg.sender, _pid, _amount);

}

PUBLIC 30

Vonder Finance - Token and Farm - Smart Contract Audit

Reassessment

The issue was fixed by limiting the maximum cap of the depositFeeBP variable to 5000 in the add and set

functions of the MasterChef contract. The maximum deposit fee, therefore, became 50%.

MasterChef.sol

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

function add(uint256 _allocPoint, IBEP20 _lpToken, uint16 _depositFeeBP, bool

_withUpdate) public onlyOwner {

require(_depositFeeBP <= 5000, "add: invalid deposit fee basis points");

if (_withUpdate) {

massUpdatePools();

}

uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;

totalAllocPoint = totalAllocPoint.add(_allocPoint);

poolInfo.push(PoolInfo({

lpToken: _lpToken,

allocPoint: _allocPoint,

lastRewardBlock: lastRewardBlock,

accVonPerShare: 0,

depositFeeBP: _depositFeeBP

}));

}

// Update the given pool's VON allocation point and deposit fee. Can only be

called by the owner.

function set(uint256 _pid, uint256 _allocPoint, uint16 _depositFeeBP, bool

_withUpdate) public onlyOwner {

require(_depositFeeBP <= 5000, "set: invalid deposit fee basis points");

if (_withUpdate) {

massUpdatePools();

}

totalAllocPoint =

totalAllocPoint.sub(poolInfo[_pid].allocPoint).add(_allocPoint);

poolInfo[_pid].allocPoint = _allocPoint;

poolInfo[_pid].depositFeeBP = _depositFeeBP;

}

PUBLIC 31

Vonder Finance - Token and Farm - Smart Contract Audit

No. 7 Emission Rate Update May Fail

Risk Low
Likelihood Low

Impact Medium

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol

Locations updateEmissionRate(uint256) L:464-467

Description

The updateEmissionRate function calls the massUpdatePools function before updating the emission rate
variable vonPerBlock. Since the massUpdatePools function will iterate over all the pools to update pools'
reward variables, this function consumes as much gas as the number of pools in the Vonder system.

If the Vonder system has more pools, the massUpdatePools function may consume more gas than the
gas limit per block, causing a transaction failure with an out-of-gas error. Consequently, the
updateEmissionRate function will not be able to update the vonPerBlock variable anymore.

Recommendations

The first solution is adding the boolean parameter _withUpdate to the updateEmissionRate function to
enable a platform owner to update the vonPerBlock variable without the mass pools update.

Another solution is separating the tasks between the mass pools update and the vonPerBlock variable
update into different functions.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 32

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

The updateEmissionRate function calls the massUpdatePools function (line no. 465) before updating the
emission rate variable vonPerBlock (line no. 466). Since the massUpdatePools function will iterate over all
the pools to update pools' reward variables, this function consumes as much gas as the number of pools in
the Vonder system.

If the Vonder system has more pools, the massUpdatePools function may consume more gas than the gas
limit per block, causing a transaction failure with an out-of-gas error. Consequently, the
updateEmissionRate function will not be able to update the vonPerBlock variable anymore.

Masterchef.sol

464

465

466

467

function updateEmissionRate(uint256 _vonPerBlock) public onlyOwner {

massUpdatePools();

vonPerBlock = _vonPerBlock;

}

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 33

Vonder Finance - Token and Farm - Smart Contract Audit

No. 8 DevAddress Reassignment May Fail

Risk Low
Likelihood Low

Impact Medium

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol

Locations dev(address) L:453 - 456

Description

The address variable _devaddr on the dev function may be incorrectly specified by the platform developer
by mistake; for example, a zero address or an address that the developer does not own was inputted.

The incorrectly inputted address makes the dev function unavailable since it strictly checks that the user
who can change the new address must be the current devaddr only. But if the platform developer cannot
access the mistakenly inputted address, he cannot change the devaddr anymore because of the require
statement in line no. 454.

Recommendations

To prevent human error, we recommend allowing another address (e.g., the contract's owner address) to
be able to execute the dev function as a backup account.

We recommend allowing another address (e.g., the contract's owner address) to execute the dev function
as a backup account to protect against human error.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 34

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

The address variable _devaddr on the dev function may be incorrectly specified by the platform developer
by mistake; for example, a zero address or an address that the developer does not own was inputted.

The incorrectly inputted address makes the dev function unavailable since it strictly checks that the user who
can change the new address must be the current devaddr only. But if the platform developer cannot access
the mistakenly inputted address, he cannot change the devaddr anymore because of the require statement
in line no. 454.

Masterchef.sol

453

454

455

456

function dev(address _devaddr) public {

require(msg.sender == devaddr, "dev: wut?");

devaddr = _devaddr;

}

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 35

Vonder Finance - Token and Farm - Smart Contract Audit

No. 9 FeeAddress Reassignment May Fail

Risk Low
Likelihood Low

Impact Medium

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol

Locations setFeeAddress(address) L:458 - 461

Description

The address variable _feeAddress on the setFeeAddress function may be incorrectly specified by the
platform developer by mistake; for example, a zero address or an address that the developer does not
own was inputted.

The incorrectly inputted address makes the setFeeAddress function unavailable since it strictly checks
that the user who can change the new address must be the current feeAddress only. But if the platform
developer cannot access the mistakenly inputted address, he cannot change the feeAddress anymore
because of the require statement in line no. 459.

Recommendations

We recommend allowing another address (e.g., the contract's owner address) to execute the
setFeeAddress function as a backup account to protect against human error.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 36

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

The address variable _feeAddress on the setFeeAddress function may be incorrectly specified by the
platform developer by mistake; for example, a zero address or an address that the developer does not own
was inputted.

The incorrectly inputted address makes the setFeeAddress function unavailable since it strictly checks that
the user who can change the new address must be the current feeAddress only. But if the platform
developer cannot access the mistakenly inputted address, he cannot change the feeAddress anymore
because of the require statement in line no. 459.

Masterchef.sol

458

459

460

461

function setFeeAddress(address _feeAddress) public{

require(msg.sender == feeAddress, "setFeeAddress: FORBIDDEN");

feeAddress = _feeAddress;

}

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 37

Vonder Finance - Token and Farm - Smart Contract Audit

No. 10 The Compiler May Be Susceptible To The Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol
VonderToken.sol

Locations
MasterChef.sol L:3
VonderToken.sol L:2

Description

The contract uses an outdated Solidity compiler version which may be susceptible to publicly disclosed
vulnerabilities. The compiler version currently used by Vonder Finance is 0.6.6 which contains the list of
known bugs as the following link:

https://docs.soliditylang.org/en/v0.6.6/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger
some attacks further.

Recommendations

We recommend using the latest patch version, v0.6.12.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 38

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

The usage example of the Solidity compiler is not the latest patch version (v0.6.12).

Masterchef.sol

1

2

3

4

5

6

7

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.6;

import "./VonderToken.sol";

library Address {

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 39

Vonder Finance - Token and Farm - Smart Contract Audit

No. 11 The Compiler Is Not Locked To A Specific Version

Risk Low
Likelihood Low

Impact Medium

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol
VonderToken.sol

Locations
MasterChef.sol L:3
VonderToken.sol L:2

Description

Contract should be deployed with the compiler version that is used in a development and testing process.

The compiler version that is not strictly locked via the pragma statement leads the contract to be
incompatible against unforeseen circumstances.

Recommendations

Lock the pragma version like the example code snippet below.

pragma solidity 0.8.6;
// or
pragma solidity =0.8.6;

contract SemVerFloatingPragmaFixed {
}

Reference: https://swcregistry.io/docs/SWC-103

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 40

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

The example of the Solidity compiler that is not locked to a specific version (i.e., using >= or ^ directive).

Masterchef.sol

1

2

3

4

5

6

7

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.6;

import "./VonderToken.sol";

library Address {

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 41

Vonder Finance - Token and Farm - Smart Contract Audit

No. 12 Same LP Token May Be Added More Than Once

Risk Informational
Likelihood Low

Impact Low

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol

Locations add(uint256, IBEP20, uint16, bool) L:315-329

Description

The add function allows a platform developer to add the same LP token to the yield farming system
without verifying that the token has previously been added. If the same LP token is added more than once,
this will affect the reward distribution parameters, such as totalAllocPoint, as well as affecting the user
experience.

Recommendations

Verify the duplication of the LP token before adding it to the yield farming system.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 42

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

Masterchef.sol

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

function add(uint256 _allocPoint, IBEP20 _lpToken, uint16 _depositFeeBP, bool

_withUpdate) public onlyOwner {

require(_depositFeeBP <= 10000, "add: invalid deposit fee basis points");

if (_withUpdate) {

massUpdatePools();

}

uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;

totalAllocPoint = totalAllocPoint.add(_allocPoint);

poolInfo.push(PoolInfo({

lpToken: _lpToken,

allocPoint: _allocPoint,

lastRewardBlock: lastRewardBlock,

accVonPerShare: 0,

depositFeeBP: _depositFeeBP

}));

}

The add function allows a platform developer to add the same LP token to the yield farming system without
verifying that the token has previously been added. If the same LP token is added more than once, this will
affect the reward distribution parameters, such as totalAllocPoint, as well as affecting the user
experience.

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 43

Vonder Finance - Token and Farm - Smart Contract Audit

No. 13 The Function Name With internal Visibility Is Not Complied With The Naming
Convention

Risk Informational
Likelihood Low

Impact Low

Functionality
is in use In use Status Acknowledged

Affected Files MasterChef.sol

Locations safeVonTransfer(address, uint256) L:443 - 450

Description

The coding style in the contract is inconsistent due to an incompliant Solidity style guide leading to a code
transfer disadvantage, or loss of backward compatibility.

Recommendations

The internal or private variables should be used "_" at the beginning.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

Detailed Issue

The internal function does not comply with the Solidity Style guide.

Masterchef.sol

443

444

445

446

447

448

449

450

function safeVonTransfer(address _to, uint256 _amount) internal {

uint256 vonBal = von.balanceOf(address(this));

if (_amount > vonBal) {

von.transferWithLock(_to, vonBal);

} else {

von.transferWithLock(_to, _amount);

}

}

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 44

Vonder Finance - Token and Farm - Smart Contract Audit

No. 14 Public Functions That Could Be Declared As external

Risk Informational
Likelihood Low

Impact Low

Functionality
is in use In use Status Acknowledged

Affected Files Masterchef.sol
VonderToken.sol

Locations

Masterchef.sol
add(uint256, IBEP20, uint16, bool) L:315
set(uint256, uint256, uint16, bool) L:332
deposit(uint256, uint256) L:389
withdraw(uint256, uint256) L:414
emergencyWithdraw(uint256) L:432
dev(address) L:453
setFeeAddress(address) L:458
updateEmissionRate(uint256) L:464
setVonRewardLock(uint256) L:470
setVonTotalBlockRelease(uint256) L:474

VonderToken.sol
renounceOwnership() L:216
transferOwnership(address) L:225
symbol() L:377
decimals() L:384

VonderToken.sol (Cont’d)
totalSupply() L:391
transfer(address, uint256) L:410
allowance(address, address) L:418
approve(address, uint256) L:427
transferFrom (address, address, uint256) L:446
increaseAllowance(address, uint256) L:468
decreaseAllowance(address, uint256) L:487
mint(uint256) L:500
setRewardLock(uint256) L:605
setTotalBlockRelease(uint256) L:611
transferWithLock(address, uint256) L:616
claimRewardLock() L:645
getTotalRewardLock(address) L:674
getLastClaimBlock(address) L:678
getEndClaimBlock(address) L:682
mint(address, uint256) L: 690

Description

The public functions that have never been called inside the contracts should be declared external to
save gas.

Recommendations

Use the external attribute for functions that have never been called inside the contracts.

Platform Developer Response

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 45

Vonder Finance - Token and Farm - Smart Contract Audit

Detailed Issue

An example of the public function that has never been called inside any contract but not declared
external.

Masterchef.sol

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

function add(uint256 _allocPoint, IBEP20 _lpToken, uint16 _depositFeeBP, bool

_withUpdate) public onlyOwner {

require(_depositFeeBP <= 10000, "add: invalid deposit fee basis points");

if (_withUpdate) {

massUpdatePools();

}

uint256 lastRewardBlock = block.number > startBlock ? block.number :

startBlock;

totalAllocPoint = totalAllocPoint.add(_allocPoint);

poolInfo.push(PoolInfo({

lpToken: _lpToken,

allocPoint: _allocPoint,

lastRewardBlock: lastRewardBlock,

accVonPerShare: 0,

depositFeeBP: _depositFeeBP

}));

}

Reassessment

The Vonder team acknowledged this issue but decided to remain the original code.

PUBLIC 46

Vonder Finance - Token and Farm - Smart Contract Audit

Appendix

About Us
Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of
cybersecurity consulting services such as blockchain and smart contract security consultant, smart contract
security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in areas of private and
public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes
recommendations on smart contracts' security and gas optimization to bring the most benefit to users and
platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ConsultingValix

https://medium.com/valixconsulting

PUBLIC 47

Vonder Finance - Token and Farm - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 48

