
Vega Investment Group Limited

CrownToken and
VucaStaking
Smart Contract Audit Report

Date Issued: 2 Dec 2022

Version: Final v1.0

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About CrownToken and VucaStaking 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 13

Appendix 120
About Us 120
Contact Information 120
References 121

PUBLIC 2

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the CrownToken and
VucaStaking features. This audit report was published on 2 Dec 2022. The audit scope is limited to the

CrownToken and VucaStaking features. Our security best practices strongly recommend that the Vega
Investment Group team conduct a full security audit for both on-chain and off-chain components of its

infrastructure and their interaction. A comprehensive examination has been performed during the audit

process utilizing Valix’s Formal Verification, Static Analysis, and Manual Review techniques.

About CrownToken and VucaStaking

CROWN token is an entertainment token that bridges traditional IPs with blockchain technology to enhance

the core business and create additional value for both IP owners and the community. The token is supported

by high-quality IP projects, including animated movies, series, and live-action films. Users can be relevant in

the entertainment and IPs industry value chain by utilizing the Staking feature of CROWN token by putting

CROWN token in staking smart contracts created by VUCA on adotmarketplace.com. The reward for the

staking pool derives from many streams, e.g., marketing or community development campaigns.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Vega Investment Group’s

protocol. The scope is limited to the CrownToken and VucaStaking features and their related smart

contracts.

The security audit covered the components at this specific state:

Item Description

Components

▪ CrownToken smart contract

▪ VucaStaking smart contract

▪ Imported associated smart contracts and libraries

Git Repository ▪ https://github.com/pellartech/vuca-blockchain-public

Audit Commit ▪ 13fcd040cac4e00d4a2df2adfbd31aaaffa09ecd (branch: main)

PUBLIC 3

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Certified Commit ▪ 3fafff9d7ddc1c1c868e350e3ec250f2d4e784ae (branch: main)

Audited Files

▪ ./contracts/CrownToken.sol

▪ ./contracts/VucaOwnable.sol

▪ ./contracts/VucaStaking.sol

▪ Other imported associated Solidity files

Excluded Files/Contracts
▪ ./contracts/mock/CWT.sol

▪ ./contracts/mock/USDT.sol

Remark: Our security best practices strongly recommend that the Vega Investment Group team conduct a

full security audit for both on-chain and off-chain components of its infrastructure and the interaction between

them.

PUBLIC 4

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Auditors

Role Staff List

Auditors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Authors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Reviewers Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a

single point in time. As such, the scope was limited to current known risks during the work period. The review

does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred

percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided

code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or

“endorsement” of any particular project. This audit report should also not be used as investment advice nor

provide any legal compliance.

PUBLIC 5

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the

CrownToken and VucaStaking features have sufficient security protections to be safe for use.

2 Dec 2022

Initially, Valix was able to identify 36 issues that were categorized from the “Critical” to “Informational” risk

level in the given timeframe of the assessment.

For the reassessment, the Vega Investment Group team fixed all critical issues but left 1 high issue
acknowledged due to their business requirement. Besides, the team left 2 medium issues acknowledged,
1 low issue partially fixed, 1 low issue acknowledged, and 1 informational issue acknowledged.

Below is the breakdown of the vulnerabilities found and their associated risk rating for each assessment

conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

CrownToken and
VucaStaking 2 10 10 10 4 0 1 2 2 1

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test

Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual

and automated review approaches can be mixed and matched, including business logic analysis in terms of

the malicious doer's perspective. Using automated scanning tools to navigate or find offending software

patterns in the codebase along with a purely manual or semi-automated approach, where the analyst

primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding of the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,

Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are

presented in the table.

Risk Level Definition

Critical
The code implementation does not match the specification, and it could disrupt the

platform.

High
The code implementation does not match the specification, or it could result in losing

funds for contract owners or users.

Medium
The code implementation does not match the specification under certain conditions, or it

could affect the security standard by losing access control.

Low
The code implementation does not follow best practices or use suboptimal design

patterns, which may lead to security vulnerabilities further down the line.

Informational
Findings in this category are informational and may be further improved by following best

practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as

illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.

● Impact measures the technical loss and business damage of a successful attack.

● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels

"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the

risk to an acceptable level.

PUBLIC 10

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Potentially Draining Pools’ Reward Tokens Critical Fixed In use

2 Depending On Incorrect Reward Token Balance #1 Critical Fixed In use

3 Potential Denial-Of-Service On Staking Pools High Fixed In use

4 Potential Overriding Pool Changes High Fixed In use

5 Updating Staking End Block Could Lead To State
Inconsistency High Fixed In use

6 Incorrectly Calculating Staking Rewards High Fixed In use

7 Potential Denial-Of-Service On Calculating Staker’s
Rewards High Fixed In use

8 Incorrect Logic Design Of Globally Shared Pool Of
Funds High Fixed In use

9 Improperly Sharing Staking Pool’s Tokens Balance High Acknowledged In use

10 Incorrectly Sharing Reward Token Balance Between
Staking Pools High Fixed In use

11 Improperly Updating Staking Pool Parameters High Fixed In use

12 Incorrectly Applying Pool Changes High Fixed In use

13 Possibly Stealing All Pools’ Staking and Reward
Tokens Medium Fixed In use

14 Incorrect Calculation Of Withdrawable Pool
Rewards #1 Medium Fixed In use

15 Depending On Incorrect Reward Token Balance #2 Medium Fixed In use

16 Lack Of Guaranteeing Pool State Consistency Medium Fixed In use

17 Usage Of Unsafe Token Transfer Functions Medium Fixed In use

18 Removal Recommendation For Mock Function Medium Fixed In use

19 Possibly Permanent Ownership Removal Medium Fixed In use

20 Unsafe Ownership Transfer Medium Fixed In use

PUBLIC 11

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

21 Recommended Improving Transparency And
Trustworthiness Of Privileged Operations Medium Acknowledged In use

22 Users Can Mistakenly Transfer Reward Tokens To
Staking Pools Medium Acknowledged In use

23 Incorrect Calculation Of Withdrawable Pool
Rewards #2 Low Fixed In use

24 Possibly Unstaking Or Retrieving Reward Tokens
Before Staking Period Ends Low Fixed In use

25 Recommended Event Emissions For Transparency
And Traceability Low Partially Fixed In use

26 Compiler Is Not Locked To Specific Version Low Fixed In use

27 Compiler May Be Susceptible To Publicly Disclosed
Bugs Low Fixed In use

28 Lack Of Applying Pool Changes Low Fixed In use

29 Incorrectly Calculating Total Pool Rewards Low Fixed In use

30 Incorrectly Calculating User’s Pool Rewards Low Fixed In use

31 Lack Of Proper Input Sanitization Check Low Acknowledged In use

32 Malfunction Of The depositPoolReward Function Low Fixed In use

33 Inconsistent Error Message With The Code Informational Fixed In use

34 Inconsistent Event Emission With The Code #1 Informational Fixed In use

35 Recommended Enforcing Checks-Effects-
Interactions Pattern Informational Fixed In use

36 Inconsistent Event Emission With The Code #2 Informational Acknowledged In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 12

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Potentially Draining Pools’ Reward Tokens

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 335 - 346

Detailed Issue

We detected that the withdrawERC20 function allows an owner to mistakenly drain all (specific)
reward tokens locked in the VucaStaking contract, which might be the shared funds from multiple
staking pools.

The withdrawERC20 function could also be adopted by an attacker to steal all reward tokens.

Consider the following two scenarios that can exploit the issue.

1. Since the withdrawERC20 function does not record the amount (the _amount parameter in
L345 in the code snippet below) of the withdrawn reward tokens, the function allows an
owner to mistakenly withdraw reward tokens more than the actual amount rewarded to that
specific pool.

As a result, all reward tokens could be drained from the VucaStaking contract.

2. An attacker with a compromised owner account can drain all reward tokens locked in the
contract by adding a new (dummy) short-lived pool and waiting for the end of the pool
staking. Next, the attacker can drain all reward tokens by inputting the total balance of the
locked rewards into the withdrawERC20 function.

PUBLIC 13

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

335

336

337

338

339

340

341

342

343

344

345

346

function withdrawERC20(

uint16 _poolId,

address _to,

uint256 _amount

) external onlyOwner {

_updatePoolInfo(_poolId);

Pool memory pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

require(pool.tokensStaked == 0, "Not allowed");

IERC20(pool.rewardToken).transfer(_to, _amount);

}

Listing 1.1 The withdrawERC20 function that could drain all reward tokens

The root cause of this issue is that the withdrawERC20 function does not account for the amount (the
_amount parameter in L345) of the withdrawn reward tokens on each staking pool. Therefore, the

function would allow an owner or attacker to withdraw reward tokens multiple times as long as the locked

tokens are available.

Recommendations

We recommend updating the withdrawERC20 function as the code snippet below.

The withdrawERC20 function would check for the reward amount available to withdraw (of each
specific staking pool) against the input parameter _amount (L348).

Then, the function would account for the withdrawn amount (L350) before transferring the reward tokens to

the specified address, _to.

VucaStaking.sol

335

336

337

338

339

340

341

342

343

344

345

346

function withdrawERC20(

uint16 _poolId,

address _to,

uint256 _amount

) external onlyOwner {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

require(pool.tokensStaked == 0, "Not allowed");

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

PUBLIC 14

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

347

348

349

350

351

352

353

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

require(totalUserRewards - rewardsWithdrew >= _amount, "Insufficient pool

rewards");

pool.rewardsWithdrew += _amount * (10**IERC20(pool.stakeToken).decimals()) *

REWARDS_PRECISION;

IERC20(pool.rewardToken).transfer(_to, _amount);

}

Listing 1.2 The improved withdrawERC20 function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team decided to remove the withdrawERC20 function. Hence, this issue was

closed.

PUBLIC 15

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 2 Depending On Incorrect Reward Token Balance #1

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 312 - 332

Detailed Issue

We discovered that the retrieveReward function depends on the incorrect reward token balance (L326 and

L329 in the code snippet below), leading to potentially draining all (specific) reward tokens locked in
the VucaStaking contract, which might be the shared funds from multiple staking pools.

Consider the following two scenarios to exploit the issue.

1. Since the retrieveReward function does not record the amount (the _amount parameter in
L331) of the withdrawn reward tokens, the function allows an owner to mistakenly withdraw
reward tokens more than the actual amount rewarded to that specific pool.

As a result, all reward tokens could be drained from the VucaStaking contract.

2. An attacker with a compromised owner account can drain all reward tokens locked in the
contract by adding a new (dummy) short-lived pool and waiting for the end of the pool
staking. Next, the attacker can drain all reward tokens by inputting the total balance of the
locked rewards into the retrieveReward function.

VucaStaking.sol

312

313

314

315

316

317

318

319

320

321

322

function retrieveReward(

uint16 _poolId,

address _to,

uint256 _amount

) external onlyOwner {

_updatePoolInfo(_poolId);

Pool memory pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

_updatePoolRewards(_poolId, block.number);

pool = pools[_poolId];

PUBLIC 16

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

323

324

325

326

327

328

329

330

331

332

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 contractBalance = IERC20(pool.rewardToken).balanceOf(address(this));

// maximum amount withdrawal = balance - max claimable

require(_amount + totalUserRewards <= contractBalance + rewardsWithdrew);

IERC20(pool.rewardToken).transfer(_to, _amount);

}

Listing 2.1 The retrieveReward function
that depends on the incorrect reward token balance

The root cause of this issue is that the retrieveReward function depends on the incorrect reward token
balance (L326) which could represent the total balance aggregated from multiple staking pools.
Hence, the require statement (L329) that checks for a maximum withdrawable amount would be performed

incorrectly.

Furthermore, the retrieveReward function also does not account for the amount (the _amount parameter
in L331) of the withdrawn reward tokens on each staking pool. Therefore, the function would allow an

owner or attacker to withdraw reward tokens multiple times as long as the locked tokens are available.

Recommendations

Since no recommended code or solution can fully fix this issue without breaking the contract’s features, we

recommend redesigning and reimplementing the retrieveReward function and related subsystems to track
each pool's staking and reward tokens isolatedly.

Reassessment

The Vega Investment Group team fixed this issue by reworking the createPool function (L191 in the code

snippet below) to allow the creation of only one staking pool for each VucaStaking contract.

VucaStaking.sol

179

180

181

182

183

184

185

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

PUBLIC 17

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(currentPoolId == 0, "Staking pool was already created");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated(1, currentPoolId, pools[currentPoolId], block.number);

currentPoolId += 1;

}

Listing 2.2 The createPool function
that allows the creation of only one staking pool

PUBLIC 18

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 3 Potential Denial-Of-Service On Staking Pools

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations
VucaStaking.sol L: 73 - 78, 81 - 104, 114 - 125, 128 - 150, 153 - 176, 179 - 208,

312 - 332, 335 - 346, and 349 - 371

Detailed Issue

We noticed the potential denial-of-service issue affecting the following functions of the VucaStaking

contract.

1. getRewards function (L73 - 78)

2. getLatestPoolInfo function (L81 - 104)

3. getRewardsWithdrawable function (L114 - 125)

4. stake function (L128 - 150)

5. emergencyWithdraw function (L153 - 176)

6. unStake function (L179 - 208)

7. retrieveReward function (L312 - 332)

8. withdrawERC20 function (L335 - 346)

9. _updatePoolInfo function (L349 - 371)

The root cause of this issue is due to each affected function requiring the process of validating and applying

active pool changes (to a specific staking pool) to be done before executing the function’s main functionality.

Two functions that are the root cause of the denial-of-service issue include the _updatePoolInfo function
(code snippet 3.1) and the getLatestPoolInfo function (code snippet 3.2).

The affected functions depending on the _updatePoolInfo function are as follows.

● stake function (L128 - 150)

● emergencyWithdraw function (L153 - 176)

● unStake function (L179 - 208)

● retrieveReward function (L312 - 332)

● withdrawERC20 function (L335 - 346)

PUBLIC 19

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

The affected functions depending on the getLatestPoolInfo function are as follows.

● getRewards function (L73 - 78)

● getLatestPoolInfo function (L81 - 104)

● getRewardsWithdrawable function (L114 - 125)

● unStake function (L179 - 208)

Inside the _updatePoolInfo and getLatestPoolInfo functions, there are the for-loops that iterate through the

poolsChanges array of each specific staking pool (L352 - 370 in code snippet 3.1 and 84 - 104 in code

snippet 3.2). The loop would iterate over all array elements to look for active pool changes and apply the

changes to the pool.

We found that this process can consume a lot of gas and the gas used is prone to exceeding the block gas

limit if the length of the poolsChanges array and/or the number of the active pool changes are too large. In

the case of exceeding the block gas limit, a transaction would be reverted, leading to the denial-of-service

issue to the affected functions.

VucaStaking.sol

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

function _updatePoolInfo(uint16 _poolId) internal {

Pool storage pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges storage changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

_updatePoolRewards(_poolId, updateAtBlock);

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

changes.applied = true;

}

}

Listing 3.1 The _updatePoolInfo function that iterates to apply
all active pool changes for a specific staking pool

PUBLIC 20

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

}

Listing 3.2 The getLatestPoolInfo function that iterates over pool changes to
simulate the latest info for a specific staking pool

The code snippet 3.3 below presents the emergencyWithdraw, one of the affected functions, that would

execute the _updatePoolInfo function (L154) to apply active pool changes before transferring staking tokens

to a staker (function caller).

In case the _updatePoolInfo function consumes more gas than the block gas limit, all stakers (including even

platform owners) would not be able to interact with the staking pool anymore. This issue also includes the

case of stakers withdrawing their staking tokens via the emergencyWithdraw function.

PUBLIC 21

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

function emergencyWithdraw(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Update pool

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

staking.amount = 0;

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

}

Listing 3.3 One of the affected functions, emergencyWithdraw,
executing the _updatePoolInfo function

Recommendations

Since no recommended code or solution can fully fix this issue without breaking the contract’s features, we

recommend redesigning and reimplementing the pool change update mechanism.

One possible solution is to apply the pagination concept for batch updates of pool changes.
Specifically, the large number of pending pool changes would be divided into smaller batch updates. All

pending pool changes must be updated sequentially when they are in active blocks only.

This way, the pool change update mechanism can guarantee that there would be no conflict when applying

changes and can prevent the update from the denial-of-service issue.

Reassessment

The Vega Investment Group team fixed this issue by allowing the maximum number of pending pool

changes in the queue (for each staking pool) to be 10.

PUBLIC 22

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 4 Potential Overriding Pool Changes

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 81 - 111, 267 - 275, 277 - 287, 290 - 299, and 349 - 371

Detailed Issue

Code snippet 4.1 presents the functions updateMaxStakeTokens (L267 - 275),

updateRewardTokensPerBlock (L277 - 287), and updateEndBlock (L290 - 299), which allow an owner to

update pool parameters (i.e., maxStakeTokens, rewardTokensPerBlock, and endBlock respectively) of a

particular pool.

Once an owner triggers one of those functions, a pending pool change order would be created and it would

be applied by the functions _updatePoolInfo (L366 - 368 in code snippet 4.2) and getLatestPoolInfo (L101

- 103 in code snippet 4.3) at its (future) active block number.

We discovered that, with this pool change update mechanism, some pending pool changes could
potentially be conflicted after they are applied to the pool.

Consider the following pool change update scenario to understand the issue.

● PoolChange #1: For updating the maxStakeTokens parameter to 100 was created and would be

active at block number 3000.

PoolChange: {

maxStakeTokens: 100 (the parameter that an owner wanted to update),

endBlock: 5000 (loaded from the contract storage),

rewardTokensPerBlock: 50 (loaded from the contract storage),

activeBlock: 3000
}

PUBLIC 23

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

● PoolChange #2: For updating the rewardTokensPerBlock parameter to 200 was created and

would be active at block number 3001.

PoolChange: {

maxStakeTokens: 70 (loaded from the contract storage;

100 in the PoolChange #1 was not yet applied),

endBlock: 5000 (loaded from the contract storage),

rewardTokensPerBlock: 200 (the parameter that an owner wanted to update),

activeBlock: 3001
}

Immediately after both pool changes have been applied to the pool, the parameter maxStakeTokens
would store 70 (which is the old value loaded from the contract storage at the time creating the
PoolChange #2; the new value of 100 in the PoolChange #1 would not be effective on the pool as
expected).

This issue could lead to incorrect pool parameter configurations. And, the owner has no way of
knowing which pool changes have been committed but not been applied to the pool.

The root cause of this issue is that the structure of the pool change payload contains all three pool

parameters rewardTokensPerBlock, endBlock, and maxStakeTokens (L271 in code snippet 4.1). But,

when each pool change order is created, only a single parameter would be required to get updated at a time

and the other parameters would be loaded from the contract storage. Hence, this incorrect update

mechanism could lead to the pool change overriding issue.

VucaStaking.sol

267

268

269

270

271

272

273

274

275

276

277

278

function updateMaxStakeTokens(uint16 _poolId, uint256 _maxStakeTokens) external

onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false,

rewardTokensPerBlock: pools[_poolId].rewardTokensPerBlock, endBlock:

pools[_poolId].endBlock, maxStakeTokens: _maxStakeTokens, timestamp:

block.timestamp, blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

function updateRewardTokensPerBlock(uint16 _poolId, uint256

_rewardTokensPerBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

PUBLIC 24

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

uint256 rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(pools[_poolId].stakeToken).decimals()) * REWARDS_PRECISION;

PoolChanges memory changes = PoolChanges({ applied: false,

rewardTokensPerBlock: rewardTokensPerBlock, endBlock: pools[_poolId].endBlock,

maxStakeTokens: pools[_poolId].maxStakeTokens, timestamp: block.timestamp,

blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

// end block updatable

function updateEndBlock(uint16 _poolId, uint256 _endBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number <= _endBlock, "Invalid input");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false,

rewardTokensPerBlock: pools[_poolId].rewardTokensPerBlock, endBlock: _endBlock,

maxStakeTokens: pools[_poolId].maxStakeTokens, timestamp: block.timestamp,

blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

Listing 4.1 The updateMaxStakeTokens, updateRewardTokensPerBlock,
and updateEndBlock functions

VucaStaking.sol

349

350

351

352

353

354

355

356

357

358

359

function _updatePoolInfo(uint16 _poolId) internal {

Pool storage pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges storage changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

PUBLIC 25

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

360

361

362

363

364

365

366

367

368

369

370

371

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

_updatePoolRewards(_poolId, updateAtBlock);

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

changes.applied = true;

}

}

Listing 4.2 The _updatePoolInfo function that applies pool changes to the pool

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

PUBLIC 26

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

111 }

Listing 4.3 The getLatestPoolInfo function that employs pool changes

Recommendations

We recommend revising all the associated functions and data structures. In code snippet 4.4 below, we

revised the functions updateMaxStakeTokens (L267 - 275), updateRewardTokensPerBlock (L277 - 287),

and updateEndBlock (L290 - 299) to support updating only a single pool parameter at a time.

We also improved the functions _updatePoolInfo (L367 - 375 in code snippet 4.5) and getLatestPoolInfo
(L101 - 109 in code snippet 4.6) to update only a single pool parameter over each pool change order.

VucaStaking.sol

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

function updateMaxStakeTokens(uint16 _poolId, uint256 _maxStakeTokens) external

onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false, updateParam:

UpdateParam.MaxStakeTokens, updateParamValue: _maxStakeTokens, timestamp:

block.timestamp, blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

function updateRewardTokensPerBlock(uint16 _poolId, uint256

_rewardTokensPerBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

uint256 rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(pools[_poolId].stakeToken).decimals()) * REWARDS_PRECISION;

PoolChanges memory changes = PoolChanges({ applied: false, updateParam:

UpdateParam.RewardTokensPerBlock, updateParamValue: rewardTokensPerBlock,

timestamp: block.timestamp, blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

PUBLIC 27

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

289

290

291

292

293

294

295

296

297

298

299

// end block updatable

function updateEndBlock(uint16 _poolId, uint256 _endBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number <= _endBlock, "Invalid input");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false, updateParam:

UpdateParam.EndBlock, updateParamValue: _endBlock, timestamp: block.timestamp,

blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

Listing 4.4 The improved updateMaxStakeTokens,
updateRewardTokensPerBlock, and updateEndBlock functions

that support updating only a single pool parameter at a time

VucaStaking.sol

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

function _updatePoolInfo(uint16 _poolId) internal {

Pool storage pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges storage changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

_updatePoolRewards(_poolId, updateAtBlock);

if (changes.updateParam == UpdateParam.MaxStakeTokens) {

pool.maxStakeTokens = changes.updateParamValue;

}

else if (changes.updateParam == UpdateParam.EndBlock) {

pool.endBlock = changes.updateParamValue;

}

else if (changes.updateParam == UpdateParam.RewardTokensPerBlock) {

pool.rewardTokensPerBlock = changes.updateParamValue;

}

PUBLIC 28

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

377

378

379

changes.applied = true;

}

}

Listing 4.5 The improved _updatePoolInfo function

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

if (changes.updateParam == UpdateParam.MaxStakeTokens) {

pool.maxStakeTokens = changes.updateParamValue;

}

else if (changes.updateParam == UpdateParam.EndBlock) {

pool.endBlock = changes.updateParamValue;

}

else if (changes.updateParam == UpdateParam.RewardTokensPerBlock) {

pool.rewardTokensPerBlock = changes.updateParamValue;

}

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

}

Listing 4.6 The improved getLatestPoolInfo function

PUBLIC 29

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team adopted our recommended code to fix this issue.

PUBLIC 30

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 5 Updating Staking End Block Could Lead To State Inconsistency

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 81 - 111, 290 - 299, and 349 - 371

Detailed Issue

The updateEndBlock function (code snippet 5.1) allows an owner to create a pool change order for
updating the endBlock parameter (L295 - 296) for a specified pool id. The pool change order would be

applied to the pool by the following functions: _updatePoolInfo (L367 in code snippet 5.2) and

getLatestPoolInfo (L102 in code snippet 5.3).

However, when applying the endBlock parameter to the pool, we detected the conflict possibility, leading to

the state inconsistency issue.

More specifically, if the new endBlock parameter (L295 in code snippet 5.1) is less than or equal to its active

block number (block.number + pools[_poolId].updateDelay). The conflict would occur if other pool changes

with an active block number more than the new endBlock parameter were applied before the new endBlock
parameter is effective.

In other words, all pending pool changes with an active block number more than the new endBlock
parameter would become invalid, and they would cause state inconsistency suddenly after they are applied

to the pool.

To understand this issue better, consider the following pool change update scenario.

● PoolChange #1: For updating the rewardTokensPerBlock parameter to 100 was created and

would be active at block number 1000.

● PoolChange #2: For updating the maxStakeTokens parameter to 5000 was created and would be

active at block number 1001.

● PoolChange #3: For updating the endBlock parameter to 900 was created and would be active at
block number 1002.

PUBLIC 31

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Suddenly after all three pool changes above have been applied, the pool would end staking at block
number 900 as per PoolChange #3, making the PoolChange #1 and PoolChange #2 that had been
applied previously became invalid, rendering the inconsistent state to that pool.

The root cause of the issue is that the updateEndBlock function lacks proper validation on the endBlock
parameter (L292 in code snippet 5.1).

VucaStaking.sol

290

291

292

293

294

295

296

297

298

299

function updateEndBlock(uint16 _poolId, uint256 _endBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number <= _endBlock, "Invalid input");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false,

rewardTokensPerBlock: pools[_poolId].rewardTokensPerBlock, endBlock: _endBlock,

maxStakeTokens: pools[_poolId].maxStakeTokens, timestamp: block.timestamp,

blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

Listing 5.1 The updateEndBlock function that allows an owner to create a pool change order
for updating the endBlock parameter for a specified pool id

VucaStaking.sol

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

function _updatePoolInfo(uint16 _poolId) internal {

Pool storage pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges storage changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

_updatePoolRewards(_poolId, updateAtBlock);

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

PUBLIC 32

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

368

369

370

371

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

changes.applied = true;

}

}

Listing 5.2 The _updatePoolInfo function that
applies the new endBlock parameter for a specified pool id

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

}

Listing 5.3 The getLatestPoolInfo function that applies the new endBlock parameter to
simulate the latest info for a specific staking pool

PUBLIC 33

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

As discussed earlier, the root cause of this issue is that the updateEndBlock function lacks proper validation

on the endBlock parameter. We recommend validating the endBlock parameter with the following require

statement (L292 in the code snippet below).

require(_endBlock > block.number + pools[_poolId].updateDelay, "Invalid input");

This validation check would guarantee that the new endBlock parameter must always be more than its

active block number, preventing the state inconsistency issue.

VucaStaking.sol

290

291

292

293

294

295

296

297

298

299

function updateEndBlock(uint16 _poolId, uint256 _endBlock) external onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(_endBlock > block.number + pools[_poolId].updateDelay, "Invalid

input");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

PoolChanges memory changes = PoolChanges({ applied: false,

rewardTokensPerBlock: pools[_poolId].rewardTokensPerBlock, endBlock: _endBlock,

maxStakeTokens: pools[_poolId].maxStakeTokens, timestamp: block.timestamp,

blockNumber: block.number });

poolsChanges[_poolId].push(changes);

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number +

pools[_poolId].updateDelay);

}

Listing 5.4 The improved updateEndBlock function
with proper validation on the endBlock parameter

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue as per our suggestion.

PUBLIC 34

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 6 Incorrectly Calculating Staking Rewards

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 211 - 233 and 236 - 265

Detailed Issue

We discovered an incorrect input validation on the _startBlock parameter on the createPool function (L245 in

code snippet 6.1) leading to incorrectly calculating staking rewards.

If the _startBlock parameter was inputted less than the current block number (block.number), the incorrect

_startBlock’s value would become the parameter pool.lastRewardedBlock (L258 in code snippet 6.1) in the

following formula (L226 in code snippet 6.2).

blocksSinceLastReward = floorBlock - pool.lastRewardedBlock

The computed blocksSinceLastReward would be more than the expected value which would cause the

calculated rewards (L228 in code snippet 6.2) for stakers of that pool to be more than the actual amount.

Subsequently, the platform owner would have to pay stakers more reward tokens than expected.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

PUBLIC 35

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PoolChanges memory changes;

emit PoolUpdated(currentPoolId, pools[currentPoolId], changes,

block.number);

currentPoolId += 1;

}

Listing 6.1 The createPool function with incorrect validation on the _startBlock parameter

VucaStaking.sol

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

function getPoolRewardsCheckpoint(uint16 _poolId, uint256 _blockNumber)

public

view

returns (

uint256 accumulatedRewardsPerShare,

uint256 lastRewardedBlock,

uint256 rewards

)

{

Pool memory pool = pools[_poolId];

uint256 floorBlock = _blockNumber <= pool.endBlock ? _blockNumber :

pool.endBlock;

uint256 blocksSinceLastReward;

if (floorBlock >= pool.lastRewardedBlock) {

blocksSinceLastReward = floorBlock - pool.lastRewardedBlock;

}

rewards = blocksSinceLastReward * pool.rewardTokensPerBlock;

if (pool.tokensStaked > 0) {

accumulatedRewardsPerShare = pool.accumulatedRewardsPerShare + (rewards

/ pool.tokensStaked);

}

lastRewardedBlock = floorBlock;

}

Listing 6.2 The getPoolRewardsCheckpoint function that could compute incorrect staking rewards

PUBLIC 36

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend improving the input validation on the _startBlock parameter by checking that the inputted
value must be more than the current block number (block.number) like L245 in the code snippet below.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PoolChanges memory changes;

emit PoolUpdated(currentPoolId, pools[currentPoolId], changes,

block.number);

currentPoolId += 1;

}

Listing 6.3 The improved createPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 37

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Reassessment

This issue was fixed as per our recommendation.

PUBLIC 38

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 7 Potential Denial-Of-Service On Calculating Staker’s Rewards

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 73 - 78, 81 - 111, and 179 - 208

Detailed Issue

The unStake function (code snippet 7.1) allows stakers to withdraw their staking tokens and retrieve their

reward tokens after the staking period ends. To calculate the rewards for each staker, the unStake function

executes the getRewards function (L190).

Then, the getRewards function invokes the getLatestPoolInfo function to get the up-to-date pool’s

parameters (L75 in code snippet 7.2). The getLatestPoolInfo function has to iterate over all pool changes

(contained in the poolsChanges array) to simulate the up-to-date pool’s parameters (L84 - 104 in code

snippet 7.3).

We noticed that the process of simulating the up-to-date pool’s parameters in the getLatestPoolInfo function

can consume more gas than the block gas limit if the number of pool changes is too large, causing the

unstaking transaction to be reverted.

Moreover, we also noticed that the getRewards function actually consumes only the static pool parameter

pool.stakeToken (L77 in code snippet 7.2) which could be directly loaded from the contract storage.

For this reason, we consider that invoking the getLatestPoolInfo function (by the getRewards
function) without utilizing any dynamic pool parameters would highly increase the opportunity for
the unstaking transaction to be reverted due to exceeding the block gas limit.

VucaStaking.sol

179

180

181

182

183

184

185

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

PUBLIC 39

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Pay rewards

uint256 rewards = getRewards(_poolId, msg.sender);

IERC20(pool.rewardToken).transfer(msg.sender, rewards);

// Update pool

pool.rewardsWithdrew += getRawRewards(_poolId, msg.sender);

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

}

Listing 7.1 The unStake function executes the getRewards function
to calculate staker’s rewards for a specific staking pool

VucaStaking.sol

73

74

75

76

77

78

function getRewards(uint16 _poolId, address _account) public view returns

(uint256) {

uint256 rawRewards = getRawRewards(_poolId, _account);

Pool memory pool = getLatestPoolInfo(_poolId);

return rawRewards / (10**IERC20(pool.stakeToken).decimals()) /

REWARDS_PRECISION;

}

Listing 7.2 The getRewards function invokes the getLatestPoolInfo function to
get the up-to-date parameters for a specific staking pool

VucaStaking.sol

81

82

83

84

85

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PUBLIC 40

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

}

Listing 7.3 The getLatestPoolInfo function that iterates over pool changes
to simulate the up-to-date parameters for a specific staking pool,

which can consume more gas than the block gas limit

Recommendations

We consider that invoking the getLatestPoolInfo function (by the getRewards function) without utilizing any

dynamic pool parameters would highly increase the opportunity for the unstaking transaction to be reverted

due to exceeding the block gas limit.

To mitigate the denial-of-service issue on unstaking transactions, we recommend updating the getRewards

function by directly loading the pool’s static parameters from the contract storage instead like L75 in

the below code snippet.

PUBLIC 41

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

73

74

75

76

77

78

function getRewards(uint16 _poolId, address _account) public view returns

(uint256) {

uint256 rawRewards = getRawRewards(_poolId, _account);

Pool memory pool = pools[_poolId];

return rawRewards / (10**IERC20(pool.stakeToken).decimals()) /

REWARDS_PRECISION;

}

Listing 7.4 The improved getRewards function that
directly loads the pool’s static parameters from the contract storage

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue according to our suggestion.

PUBLIC 42

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 8 Incorrect Logic Design Of Globally Shared Pool Of Funds

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 153 - 176, 179 - 197, 312 - 332, and 335 - 346

Detailed Issue

This issue affects the following functions.

1. emergencyWithdraw function (L153 - 176 in VucaStaking.sol)

2. unStake function (L179 - 197 in VucaStaking.sol)

3. retrieveReward function (L312 - 332 in VucaStaking.sol)

4. withdrawERC20 function (L335 - 346 in VucaStaking.sol)

In the VucaStaking contract, multiple staking pools can be created and active simultaneously. We found that
all staking pools that are utilizing the same staking and/or reward token(s) would share their funds as
a global single pool.

Consequently, the invocation of any of the above-listed functions on one staking pool could affect
the balance of the other associated staking pools.

For this reason, we considered that the globally shared pool of funds was designed incorrectly and the

design is prone to several pool imbalance issues.

Imagine if one staking pool’s balance is managed incorrectly somehow, that would affect the balance
of other staking pools immediately.

PUBLIC 43

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend redesigning and reimplementing the associated functions and their subsystems to separate
each staking pool’s balance apart.

Reassessment

The Vega Investment Group team fixed this issue by reworking the createPool function (L191 in the code

snippet below) to allow the creation of only one staking pool for each VucaStaking contract.

VucaStaking.sol

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(currentPoolId == 0, "Staking pool was already created");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated(1, currentPoolId, pools[currentPoolId], block.number);

currentPoolId += 1;

}

Listing 8.1 The createPool function
that allows the creation of only one staking pool

PUBLIC 44

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 9 Improperly Sharing Staking Pool’s Tokens Balance

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 236 - 265

Detailed Issue

In the VucaStaking contract, the createPool function (code snippet below) permits an owner to create a

staking pool with the same staking and reward tokens. At this point, we found the improperly shared
tokens balance issues if a pool has the same staking and reward tokens.

Consider the following two scenarios.

1. If an owner manages the reward token’s balance incorrectly, not every staker would be able
to successfully execute the unStake function because the total amount aggregated from the

staking and reward tokens of that pool would be insufficient for all stakers.

2. An owner can withdraw all tokens from the pool via the retrieveReward function.

The root cause of this issue is that the staking token’s amount could be viewed as the available
tokens for retrieving as the rewards.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

PUBLIC 45

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PoolChanges memory changes;

emit PoolUpdated(currentPoolId, pools[currentPoolId], changes,

block.number);

currentPoolId += 1;

}

Listing 9.1 The createPool function that permits to create a staking pool
with the same staking and reward tokens

Recommendations

We recommend updating the createPool function by adding a sanitization check like L248 in the code

snippet below to ensure that each staking pool cannot have the same staking and reward tokens.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

require(_stakeToken != _rewardToken, "Staking token cannot be the same

as the reward token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

PUBLIC 46

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PoolChanges memory changes;

emit PoolUpdated(currentPoolId, pools[currentPoolId], changes,

block.number);

currentPoolId += 1;

}

Listing 9.2 The improved createPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team acknowledged this issue. Since using the same staking and reward
tokens in a certain pool is a business requirement, the team decided to maintain the original code.

PUBLIC 47

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 10 Incorrectly Sharing Reward Token Balance Between Staking Pools

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 150 - 177 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

The unStake function (code snippet 10.1) does not check and update the parameter

pool.extension.totalPoolRewards.

Hence, the function can view the balance of other staking pools that utilize the same reward token as
their staking and/or reward tokens as the reward balance of one particular pool.

As a result, an invocation of the unStake function on one staking pool can affect other pools’ balance.

Let’s consider the following exploitable scenario to understand this issue.

1. Pool-A is created using CROWN as a staking token and USDT as a reward token.

2. Pool-B is created using USDT as a staking token and CROWN as a reward token.

3. User-A stakes 50 CROWN to Pool-A.

4. User-B stakes 50 USDT to Pool-B.

5. Owner deposits 200 CROWN as a pool reward for Pool-B.

6. Both pools reach their staking period.

7. User-A unstakes his 50 CROWN from Pool-A and retrieves 10 USDT as a staking reward.

In this step, 10 USDT staked by User-B for Pool-B (Step 4) has been withdrawn incorrectly.
The unstake function did not check and update the totalPoolRewards parameter.

PUBLIC 48

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

8. User-B unstakes his 50 USDT from Pool-B to get 100 CROWN as a staking reward but the

transaction is reverted.

Since the total balance of USDT in the VucaStaking contract is now 40, not 50 (10 USDT was
withdrawn by User-A in Step 7), User-B cannot unstake his 50 USDT tokens even if an owner
had already deposited sufficient CROWN tokens as a reward in Step 5.

Please note that the scenario described above is one of several exploitable scenarios.

VucaStaking.sol

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock < block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

uint256 rewards = getRewards(_poolId, msg.sender);

// Update pool

pool.tokensStaked -= amount;

emit StakingChanged("StakingChanged", msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

// Pay rewards

IERC20(pool.rewardToken).safeTransfer(msg.sender, rewards);

// Withdraw tokens

IERC20(pool.stakeToken).safeTransfer(address(msg.sender), amount);

}

Listing 10.1 The unStake function that does not check and update the parameter
pool.extension.totalPoolRewards

Recommendations

We recommend reworking the unStake function to check and update the parameter

pool.extension.totalPoolRewards accordingly and making sure that each staking pool’s balance is

separated apart.

PUBLIC 49

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Please be sure to perform the proper unit testing on all possible edge cases to ensure that all related

functions will correctly perform as per your staking model.

Reassessment

The Vega Investment Group team fixed this issue by reworking the createPool function (L191 in the code

snippet below) to allow the creation of only one staking pool for each VucaStaking contract.

VucaStaking.sol

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(currentPoolId == 0, "Staking pool was already created");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated(1, currentPoolId, pools[currentPoolId], block.number);

currentPoolId += 1;

}

Listing 10.2 The createPool function
that allows the creation of only one staking pool

PUBLIC 50

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 11 Improperly Updating Staking Pool Parameters

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 150 - 177 and 294 - 317 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We discovered that the unStake and retrieveReward functions do not properly update important parameters.

For the unStake function (code snippet 11.1), we found that the function does not update the parameters

pool.rewardsWithdrew and pool.extension.totalPoolRewards.

For the retrieveReward function (code snippet 11.2), we found that the function does not update the

parameters pool.extension.noAddressRewards and pool.extension.totalPoolRewards.

Without updating these parameters properly, staking pools could not separate their reward balance.

Please refer to Issues #2 (Depending On Incorrect Reward Token Balance #1), #8 (Incorrect Logic Design Of

Globally Shared Pool Of Funds), and #13 (Possibly Stealing All Pools’ Staking and Reward Tokens) for more

details.

VucaStaking.sol

150

151

152

153

154

155

156

157

158

159

160

161

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock < block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

uint256 rewards = getRewards(_poolId, msg.sender);

PUBLIC 51

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

// Update pool

pool.tokensStaked -= amount;

emit StakingChanged("StakingChanged", msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

// Pay rewards

IERC20(pool.rewardToken).safeTransfer(msg.sender, rewards);

// Withdraw tokens

IERC20(pool.stakeToken).safeTransfer(address(msg.sender), amount);

}

Listing 11.1 The unStake function

VucaStaking.sol

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

function retrieveReward(uint16 _poolId, address _to) external onlyOwner {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock < block.number, "Staking active");

_updatePoolRewards(_poolId, block.number);

pool = pools[_poolId];

uint256 totalPoolRewards = pool.extension.totalPoolRewards;

uint256 noAddressRewards = pool.extension.noAddressRewards;

uint256 rewardsWithdrew = pool.extension.rewardsWithdrew;

uint256 totalUserRewards = pool.extension.totalUserRewards /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

require(totalPoolRewards + noAddressRewards > totalUserRewards +

rewardsWithdrew, "Insufficient pool rewards");

uint256 amount = totalPoolRewards + noAddressRewards - totalUserRewards -

rewardsWithdrew;

pool.extension.rewardsWithdrew += amount;

emit RewardsRetrieved('RewardsRetrieved', _poolId, amount);

IERC20(pool.rewardToken).safeTransfer(_to, amount);

}

Listing 11.2 The retrieveReward function

PUBLIC 52

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend updating all associated parameters (and also all related functions) by making sure that each

staking pool’s balance would be isolated from others.

Moreover, we do not assure that the formulas in L308 and L310 in code snippet 11.2 above would
function correctly after the associated parameters are updated. Thus, please double-check these
formulas thoroughly.

Please be sure to perform the proper unit testing on all possible edge cases to ensure that all related

functions would correctly perform as per your staking model.

Reassessment

The Vega Investment Group team fixed this issue by reworking the createPool function (L191 in the code

snippet below) to allow the creation of only one staking pool for each VucaStaking contract.

VucaStaking.sol

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(currentPoolId == 0, "Staking pool was already created");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated(1, currentPoolId, pools[currentPoolId], block.number);

PUBLIC 53

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

206

207

currentPoolId += 1;

}

Listing 11.3 The createPool function
that allows the creation of only one staking pool

PUBLIC 54

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 12 Incorrectly Applying Pool Changes

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 229 - 247, 249 - 269, and 272 - 291 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

The following functions execute the _updatePoolInfo function incorrectly.

● updateMaxStakeTokens function (L229 - 247 in VucaStaking.sol)

● updateRewardTokensPerBlock function (L249 - 269 in VucaStaking.sol)

● updateEndBlock function (L272 - 291 in VucaStaking.sol)

In code snippet 12.1, the updateMaxStakeTokens function executes the _updatePoolInfo function in L233

after checking the active block (the require statement in L231).

We detected that the endBlock parameter could be updated during the invocation of the _updatePoolInfo

function in L233. If so, the require statement in L231 would not process the updated endBlock parameter,

leading to the state inconsistency issue.

VucaStaking.sol

229

230

231

232

233

234

235

236

function updateMaxStakeTokens(uint16 _poolId, uint256 _maxStakeTokens) external

onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

_updatePoolInfo(_poolId);

require(pools[_poolId].extension.currentPoolChangeId + 10 >

poolsChanges[_poolId].length, "Exceed pending changes");

PUBLIC 55

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

237

238

239

240

241

242

243

244

245

246

247

PoolChanges memory changes = PoolChanges({

applied: false, //

updateParamId: UpdateParam.MaxStakeTokens,

updateParamValue: _maxStakeTokens,

timestamp: block.timestamp,

blockNumber: block.number

});

poolsChanges[_poolId].push(changes);

emit PoolUpdated("PoolUpdated", _poolId, pools[_poolId], changes,

block.number + pools[_poolId].updateDelay);

}

Listing 12.1 The updateMaxStakeTokens, one of the functions that execute
the _updatePoolInfo function incorrectly

Recommendations

We recommend updating the functions updateMaxStakeTokens, updateRewardTokensPerBlock, and
updateEndBlock.

In code snippet 12.2, for example, the updateMaxStakeTokens function was updated by executing the
_updatePoolInfo function in L231 before checking the active block in L233.

VucaStaking.sol

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

function updateMaxStakeTokens(uint16 _poolId, uint256 _maxStakeTokens) external

onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

_updatePoolInfo(_poolId);

require(block.number + pools[_poolId].updateDelay < pools[_poolId].endBlock,

"Exceed Blocks");

require(pools[_poolId].extension.currentPoolChangeId + 10 >

poolsChanges[_poolId].length, "Exceed pending changes");

PoolChanges memory changes = PoolChanges({

applied: false, //

updateParamId: UpdateParam.MaxStakeTokens,

updateParamValue: _maxStakeTokens,

timestamp: block.timestamp,

blockNumber: block.number

});

poolsChanges[_poolId].push(changes);

emit PoolUpdated("PoolUpdated", _poolId, pools[_poolId], changes,

block.number + pools[_poolId].updateDelay);

PUBLIC 56

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

247 }

Listing 12.2 The improved updateMaxStakeTokens function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue according to our suggestion.

PUBLIC 57

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 13 Possibly Stealing All Pools’ Staking and Reward Tokens

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 312 - 332 and 335 - 346

Detailed Issue

We discovered that both functions retrieveReward (code snippet 13.1) and withdrawERC20 (code snippet

13.2) can enable an attacker with a compromised owner account to steal all staking and reward
tokens from all staking pools.

Please find the root cause of each function as follows.

● retrieveReward function (Issue #2 - Depending On Incorrect Reward Token Balance #1)

● withdrawERC20 function (Issue #1 - Potentially Draining Pools’ Reward Tokens)

Consider the following attack steps.

1. An attacker with a compromised owner account creates a dummy short-lived pool by setting the
pool’s reward token as the staking token of the target pool

2. The attacker creates another dummy short-lived pool and sets the pool’s reward token as the
reward token of the target pool

3. The attacker waits for both dummy pools to reach their staking period

4. The attacker executes either the retrieveReward or withdrawERC20 function on both dummy
pools to drain all staking and reward tokens from the target pool

5. The attacker performs the attack steps #1 - #4 on other staking pools to drain all tokens locked

in the VucaStaking contract

PUBLIC 58

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

function retrieveReward(

uint16 _poolId,

address _to,

uint256 _amount

) external onlyOwner {

_updatePoolInfo(_poolId);

Pool memory pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

_updatePoolRewards(_poolId, block.number);

pool = pools[_poolId];

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 contractBalance = IERC20(pool.rewardToken).balanceOf(address(this));

// maximum amount withdrawal = balance - max claimable

require(_amount + totalUserRewards <= contractBalance + rewardsWithdrew);

IERC20(pool.rewardToken).transfer(_to, _amount);

}

Listing 13.1 The retrieveReward function that could drain all reward tokens

VucaStaking.sol

335

336

337

338

339

340

341

342

343

344

345

346

function withdrawERC20(

uint16 _poolId,

address _to,

uint256 _amount

) external onlyOwner {

_updatePoolInfo(_poolId);

Pool memory pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

require(pool.tokensStaked == 0, "Not allowed");

IERC20(pool.rewardToken).transfer(_to, _amount);

}

Listing 13.2 The withdrawERC20 function that could drain all reward tokens

PUBLIC 59

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

Since no recommended code or solution can fully fix this issue without breaking the contract’s features, we

recommend redesigning and reimplementing both retrieveReward and withdrawERC20 functions and their

related subsystems to track each pool's staking and reward tokens isolatedly.

Also, please refer to Issues #1 (Potentially Draining Pools’ Reward Tokens) and #2 (Depending On
Incorrect Reward Token Balance #1) for more details.

Reassessment

The Vega Investment Group team fixed this issue by reworking the createPool function (L191 in the code

snippet below) to allow the creation of only one staking pool for each VucaStaking contract.

VucaStaking.sol

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(currentPoolId == 0, "Staking pool was already created");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated(1, currentPoolId, pools[currentPoolId], block.number);

currentPoolId += 1;

}

PUBLIC 60

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Listing 13.3 The createPool function
that allows the creation of only one staking pool

PUBLIC 61

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 14 Incorrect Calculation Of Withdrawable Pool Rewards #1

Risk Medium
Likelihood High

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 81 - 111, 114 - 125, and 211 - 233

Detailed Issue

We found an incorrect calculation of the withdrawable pool rewards when invoking the

getRewardsWithdrawable function (code snippet 14.1).

Specifically, the getRewardsWithdrawable function would ask for the pool object with up-to-date parameters

(L115 in code snippet 14.1) from the getLatestPoolInfo function (code snippet 14.2). At this point, we noticed
that the getLatestPoolInfo function could return the pool object with incorrect parameters.

Consequently, the incorrect pool’s parameters would eventually make the calculation of the pool rewards

withdrawable (L122 - 124 in code snippet 14.1) returned by the getRewardsWithdrawable function to be

incorrect.

VucaStaking.sol

114

115

116

117

118

119

120

121

122

123

124

125

function getRewardsWithdrawable(uint16 _poolId) public view returns (uint256) {

Pool memory pool = getLatestPoolInfo(_poolId);

uint256 contractBalance = IERC20(pool.rewardToken).balanceOf(address(this));

if (pool.endBlock > block.number || contractBalance == 0) {

return 0;

}

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

return contractBalance + rewardsWithdrew - totalUserRewards;

}

Listing 14.1 The getRewardsWithdrawable function that
incorrectly calculates the withdrawable pool rewards

PUBLIC 62

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

The root cause of this issue is that the getLatestPoolInfo function mistakenly applies pool changes
in memory (L98 - 103 and L107 - 108 in code snippet 14.2), instead of the contract storage.

As a result, when the getLatestPoolInfo function executes the getPoolRewardsCheckpoint function (L98 and

L107 in code snippet 14.2), the getPoolRewardsCheckpoint function would return incorrectly computed

parameters pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, and rewards.

That is because the getPoolRewardsCheckpoint function would load the pool object from the
contract storage (L220 in code snippet 14.3), which is a different state variable section to the one
updated in the memory of the getLatestPoolInfo function.

In other words, the getPoolRewardsCheckpoint function would always load the outdated pool object from the

contract storage, leading to the incorrect calculation of the returned parameters

pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, and rewards (L222 - 232 in code snippet

14.3).

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

PUBLIC 63

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

109

110

111

return pool;

}

Listing 14.2 The getLatestPoolInfo function
that mistakenly applies pool changes in memory

VucaStaking.sol

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

function getPoolRewardsCheckpoint(uint16 _poolId, uint256 _blockNumber)

public

view

returns (

uint256 accumulatedRewardsPerShare,

uint256 lastRewardedBlock,

uint256 rewards

)

{

Pool memory pool = pools[_poolId];

uint256 floorBlock = _blockNumber <= pool.endBlock ? _blockNumber :

pool.endBlock;

uint256 blocksSinceLastReward;

if (floorBlock >= pool.lastRewardedBlock) {

blocksSinceLastReward = floorBlock - pool.lastRewardedBlock;

}

rewards = blocksSinceLastReward * pool.rewardTokensPerBlock;

if (pool.tokensStaked > 0) {

accumulatedRewardsPerShare = pool.accumulatedRewardsPerShare + (rewards

/ pool.tokensStaked);

}

lastRewardedBlock = floorBlock;

}

Listing 14.3 The getPoolRewardsCheckpoint function
that loads the outdated pool object from the contract storage

Recommendations

Since no recommended code or solution can fully fix this issue without breaking the contract’s features, we

recommend redesigning and reimplementing the associated functions by ensuring that the functions must
refer to the same state variable section.

PUBLIC 64

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Reassessment

The Vega Investment Group team redesigned and reimplemented a new rewarding subsystem.

As a result, the getRewardsWithdrawable, getLatestPoolInfo, and getPoolRewardsCheckpoint functions

were removed from the VucaStaking contract. Hence, this issue was fixed.

PUBLIC 65

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 15 Depending On Incorrect Reward Token Balance #2

Risk Medium
Likelihood High

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 114 - 125

Detailed Issue

We detected that the getRewardsWithdrawable function depends on the incorrect reward token balance

(L117 in the code snippet below), leading to the return of an incorrect maximum withdrawable reward
for the specified pool.

Consider the following two scenarios to exploit the issue.

1. If the staking token (pool.stakeToken) is the same as the reward token (pool.rewardToken) for
a pool, and then there are some stakings from users and the staking period of that pool is
ended.

Then the if statement (L118 - 120) would be bypassed (without concerning that the balance of
funds could also be the staked tokens).

2. If the reward token (pool.rewardToken) of one pool is the same token utilized by another pool
that is using the token as a staking or reward token.

Then the if statement (L118 - 120) would be bypassed.

From the exploit scenarios above, if one condition is met, the if statement (L118 - 120) would be bypassed.

Later, the getRewardsWithdrawable function would return an incorrect maximum withdrawable
reward for the specified pool as the returned reward amount could be the shared funds from multiple
pools (or even the same pool with the same staking and reward tokens).

PUBLIC 66

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

114

115

116

117

118

119

120

121

122

123

124

125

function getRewardsWithdrawable(uint16 _poolId) public view returns (uint256) {

Pool memory pool = getLatestPoolInfo(_poolId);

uint256 contractBalance = IERC20(pool.rewardToken).balanceOf(address(this));

if (pool.endBlock > block.number || contractBalance == 0) {

return 0;

}

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

return contractBalance + rewardsWithdrew - totalUserRewards;

}

Listing 15.1 The getRewardsWithdrawable function
that depends on the incorrect reward token balance

Moreover, we also discovered that the formula for calculating the returned reward is incorrect due to
improperly relying on the reward token balance (L124).

Consider the formula being used by the getRewardsWithdrawable function (L124).

rewardsWithdrawable = contractBalance + rewardsWithdrew - totalUserRewards

As the contractBalance (the reward token balance) could indicate the total balance aggregated from

multiple pools, the use of this incorrect balance could result in an incorrectly returned reward.

For example, if contractBalance = 100 (aggregated from multiple pools), rewardsWithdrew = 50 (for the

specified pool), totalUserRewards = 80 (for the specified pool). Then the rewardsWithdrawable could be

computed as 100 + 50 - 80 = 70 (not 30).

Recommendations

Since no recommended code or solution can fully fix this issue without breaking the contract’s features, we

recommend redesigning and reimplementing the new rewarding subsystem to track each pool's staking
and reward tokens separately.

Reassessment

The getRewardsWithdrawable function was removed from the VucaStaking contract. Hence, this issue was

fixed.

PUBLIC 67

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 16 Lack Of Guaranteeing Pool State Consistency

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 162 - 164 and 195 - 197

Detailed Issue

We noticed that the functions emergencyWithdraw (L162 - 164) and unStake (L195 - 197) in the code

snippet below might not maintain or guarantee the pool’s state consistency.

More specifically, in case the pool.tokensStaked < amount, the pool’s tokensStaked parameter would not

be updated, leading to a state inconsistency issue to the pool.

VucaStaking.sol

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

function emergencyWithdraw(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Update pool

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

staking.amount = 0;

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

}

PUBLIC 68

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

// (...SNIPPED...)

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Pay rewards

uint256 rewards = getRewards(_poolId, msg.sender);

IERC20(pool.rewardToken).transfer(msg.sender, rewards);

// Update pool

pool.rewardsWithdrew += getRawRewards(_poolId, msg.sender);

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

}

Listing 16.1 The emergencyWithdraw and unStake functions

PUBLIC 69

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend updating both the functions emergencyWithdraw (L162) and unStake (L193) as presented

in the code snippet below. In other words, both functions would revert transactions if the pool.tokensStaked
< amount (incurring state inconsistency).

VucaStaking.sol

153

162

174

177

193

204

function emergencyWithdraw(uint16 _poolId) external {

// (...SNIPPED...)

pool.tokensStaked -= amount;

// (...SNIPPED...)

}

// (...SNIPPED...)

function unStake(uint16 _poolId) external {

// (...SNIPPED...)

pool.tokensStaked -= amount;

// (...SNIPPED...)

}

Listing 16.2 The improved emergencyWithdraw and unStake functions

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue as per our recommendation.

PUBLIC 70

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 17 Usage Of Unsafe Token Transfer Functions

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 149, 169, 191, 200, 331, and 345

Detailed Issue

We found some usage of the ERC20’s transfer and transferFrom functions that are providing unsafe token

transfers (e.g., the transfer function in L169 in the code snippet below) as follows.

1. In the stake function (L149 in VucaStaking.sol)

2. In the emergencyWithdraw function (L169 in VucaStaking.sol)

3. In the unStake function (L191 and L200 in VucaStaking.sol)

4. In the retrieveReward function (L331 in VucaStaking.sol)

5. In the withdrawERC20 function (L345 in VucaStaking.sol)

The use of unsafe functions could lead to unexpected token transfer errors.

VucaStaking.sol

153

154

155

156

157

158

159

160

161

162

163

164

165

166

function emergencyWithdraw(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Update pool

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

staking.amount = 0;

PUBLIC 71

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

167

168

169

170

171

172

173

174

175

176

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

}

Listing 17.1 The emergencyWithdraw,
one of the functions that use an unsafe transfer function

Recommendations

We recommend applying the safer functions as follows.

● ERC20’s transfer function -> SafeERC20’s safeTransfer function

● ERC20’s transferFrom function -> SafeERC20’s safeTransferFrom function

Reassessment

This issue was fixed by employing the safeTransfer and safeTransferFrom functions according to our

recommendation.

PUBLIC 72

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 18 Removal Recommendation For Mock Function

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 302 - 309

Detailed Issue

We found the mock function named updateChangesDelayBlocks (the code snippet below) that should not be

put in production. This mock function allows an owner to update the updateDelay parameter (L305) of
any staking pools which could conflict with the protocol design.

VucaStaking.sol

301

302

303

304

305

306

307

308

309

/* @Dev only, remove in prod */

function updateChangesDelayBlocks(uint16 _poolId, uint32 _blocks) external

onlyOwner {

require(pools[_poolId].inited, "Invalid Pool");

pools[_poolId].updateDelay = _blocks;

PoolChanges memory changes;

emit PoolUpdated(_poolId, pools[_poolId], changes, block.number);

}

Listing 18.1 The mock function updateChangesDelayBlocks

Recommendations

We recommend removing the mock function updateChangesDelayBlocks from the VucaStaking contract.

Reassessment

The mock function updateChangesDelayBlocks was removed from the VucaStaking contract to fix this issue.

PUBLIC 73

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 19 Possibly Permanent Ownership Removal

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 61 - 63

Detailed Issue

The CrownToken and VucaStaking contracts inherit from the Ownable abstract contract. The Ownable

contract implements the renounceOwnership function (L61 - 63 in the code snippet below), which can

remove the contract’s ownership permanently.

If the contract owner mistakenly invokes the renounceOwnership function, they will immediately lose

ownership of the contract, and this action cannot be undone.

Ownable.sol

61

62

63

78

79

80

81

82

function renounceOwnership() public virtual onlyOwner {

_transferOwnership(address(0));

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 19.1 The renounceOwnership function
that can remove the ownership of the contract permanently

PUBLIC 74

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We consider the renounceOwnership function risky, and the contract owner should use this function with

extra care.

If possible, we recommend removing or disabling this function from the contract. The code snippet below

shows an example solution to disabling the associated renounceOwnership function.

To remediate this issue, please apply the following code to both the CrownToken and VucaStaking
contracts.

CrownToken.sol

16

17

18

function renounceOwnership() external override onlyOwner {

revert("Ownable: renounceOwnership function is disabled");

}

Listing 19.2 The disabled renounceOwnership function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue by disabling the renounceOwnership function on the

VucaStaking contract. For the CrownToken contract, the team decided to remove the inheritance from the

associated Ownable contract.

PUBLIC 75

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 20 Unsafe Ownership Transfer

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 69 - 72

Detailed Issue

The CrownToken and VucaStaking contracts inherit from the Ownable abstract contract. The Ownable

contract implements the transferOwnership function (L69 - 72 in the code snippet below), which can transfer

the ownership of the contract from the current owner to another owner.

Ownable.sol

69

70

71

72

78

79

80

81

82

function transferOwnership(address newOwner) public virtual onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the zero address");

_transferOwnership(newOwner);

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 20.1 The transferOwnership function that has the unsafe ownership transfer

From the code snippet above, the address variable newOwner (L69) may be incorrectly specified by the

current owner by mistake; for example, an address that a new owner does not own was inputted.

Consequently, the new owner loses ownership of the contract immediately, and this action is unrecoverable.

PUBLIC 76

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend applying the two-step ownership transfer mechanism as shown in the code snippet below.

CrownToken.sol

16

17

18

19

20

21

22

23

24

25

26

function transferOwnership(address _candidateOwner) public override onlyOwner {

require(_candidateOwner != address(0), "Ownable: candidate owner is the zero

address");

candidateOwner = _candidateOwner;

emit NewCandidateOwner(_candidateOwner);

}

function claimOwnership() external {

require(candidateOwner == _msgSender(), "Ownable: caller is not the

candidate owner");

_transferOwnership(candidateOwner);

candidateOwner = address(0);

}

Listing 20.2 The recommended two-step ownership transfer mechanism

This mechanism works as follows.

1. The current owner invokes the transferOwnership function by specifying the candidate owner

address _candidateOwner (L16).

2. The candidate owner proves access to his account and claims the ownership transfer by invoking

the claimOwnership function (L22)

The recommended mechanism ensures that the ownership of the contract would be transferred to another

owner who can access his account only.

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

To remediate this issue, please apply the above code to both the CrownToken and VucaStaking
contracts.

Reassessment

The Vega Investment Group team fixed this issue by applying the two-step ownership transfer mechanism to

the VucaStaking contract as per our suggestion. For the CrownToken contract, the team decided to remove

the inheritance from the associated Ownable contract.

PUBLIC 77

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 21 Recommended Improving Transparency And Trustworthiness Of Privileged
Operations

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files
contracts/VucaStaking.sol

@openzeppelin/contracts/access/Ownable.sol

Locations
VucaStaking.sol L: 236 - 265, 267 - 275, 277 - 287, 290 - 299, 302 - 309, 312 - 332,

and 335 - 346

Ownable.sol L: 61 - 63 and 69 - 72

Detailed Issue

The following lists all owner-privileged setter functions.

1. createPool function (L236 - 265 in VucaStaking.sol)

2. updateMaxStakeTokens function (L267 - 275 in VucaStaking.sol)

3. updateRewardTokensPerBlock function (L277 - 287 in VucaStaking.sol)

4. updateEndBlock function (L290 - 299 in VucaStaking.sol)

5. updateChangesDelayBlocks function (L302 - 309 in VucaStaking.sol)

6. retrieveReward function (L312 - 332 in VucaStaking.sol)

7. withdrawERC20 function (L335 - 346 in VucaStaking.sol)

8. renounceOwnership function (L61 - 63 in Ownable.sol for both CrownToken and VucaStaking
contracts)

9. transferOwnership function (L69 - 72 in Ownable.sol for both CrownToken and VucaStaking
contracts)

Our analysis found that the setter functions listed above can change important states of the
CrownToken and/or VucaStaking contracts which could affect the users’ assets.

For this reason, we consider that those setter functions should be improved for transparency and

trustworthiness.

PUBLIC 78

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend governing the associated setter functions with the Multisig, Timelock, and/or DAO
(Decentralized Autonomous Organization) mechanisms to improve the transparency and trustworthiness

of the privileged operations.

Reassessment

This issue was acknowledged by the Vega Investment Group team.

PUBLIC 79

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 22 Users Can Mistakenly Transfer Reward Tokens To Staking Pools

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Acknowledged

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 209 - 227 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We noticed that the depositPoolReward function (code snippet 22.1) allows anyone to execute it to

transfer reward tokens to a specific pool.

If a user calls this function by mistake, a user would lose his/her funds immediately.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

PUBLIC 80

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

227

block.number);

}

Listing 22.1 The depositPoolReward function that allows anyone to call it

Recommendations

We recommend applying the onlyOwner modifier to the depositPoolReward function (L209 in code

snippet 22.2).

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

function depositPoolReward(uint16 _poolId) public onlyOwner {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

}

Listing 22.2 The improved depositPoolReward function
that allows only a contract owner to call it

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team acknowledged this issue. However, the team decided not to fix this
issue as applying the onlyOwner modifier would remove their flexibility.

PUBLIC 81

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 23 Incorrect Calculation Of Withdrawable Pool Rewards #2

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 81 - 111, 114 - 125, and 211 - 233

Detailed Issue

We discovered an incorrect calculation of the withdrawable pool rewards when invoking the

getRewardsWithdrawable function (code snippet 23.1).

Specifically, the getRewardsWithdrawable function would ask for the pool object with up-to-date parameters

(L115 in code snippet 23.1) from the getLatestPoolInfo function (code snippet 23.2). At this point, we noticed
that the getLatestPoolInfo function could return the pool object with the inaccurate parameter
totalUserRewards.

Subsequently, the inaccurate parameter totalUserRewards would eventually make the calculation of the pool

rewards withdrawable (L122 and L124 in code snippet 23.1) returned by the getRewardsWithdrawable

function to be incorrect.

VucaStaking.sol

114

115

116

117

118

119

120

121

122

123

124

125

function getRewardsWithdrawable(uint16 _poolId) public view returns (uint256) {

Pool memory pool = getLatestPoolInfo(_poolId);

uint256 contractBalance = IERC20(pool.rewardToken).balanceOf(address(this));

if (pool.endBlock > block.number || contractBalance == 0) {

return 0;

}

uint256 totalUserRewards = pool.totalUserRewards /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 rewardsWithdrew = pool.rewardsWithdrew /

(10**IERC20(pool.stakeToken).decimals()) / REWARDS_PRECISION;

return contractBalance + rewardsWithdrew - totalUserRewards;

}

Listing 23.1 The getRewardsWithdrawable function that
incorrectly calculates the withdrawable pool rewards

PUBLIC 82

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

In the getLatestPoolInfo function, we noticed that if the parameter rewards returned by the

getPoolRewardsCheckpoint function (L98 and L107 in code snippet 23.2) is inaccurate, the inaccurate

rewards would make the pool’s totalUserRewards (L99 and L108) inaccurate as well.

Next, we found that the getPoolRewardsCheckpoint function would inaccurately compute the rewards
parameter (L228 in code snippet 23.3) if there is no staking at the moment of computation
(pool.tokensStaked == 0).

One example situation that could trigger this issue is when a staking pool is active but there is no
staking yet. The getPoolRewardsCheckpoint function would return the parameter rewards with a positive

value, which is incorrect. That is, the parameter rewards should ideally be 0 in that case.

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

function getLatestPoolInfo(uint16 _poolId) public view returns (Pool memory) {

Pool memory pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

for (uint256 i; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

if (changes.applied) {

continue;

}

uint256 updateAtBlock = changes.blockNumber + pool.updateDelay;

if (!(pool.endBlock > updateAtBlock && block.number >= updateAtBlock)) {

continue;

}

uint256 rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, rewards) =

getPoolRewardsCheckpoint(_poolId, updateAtBlock);

pool.totalUserRewards += rewards;

pool.maxStakeTokens = changes.maxStakeTokens;

pool.endBlock = changes.endBlock;

pool.rewardTokensPerBlock = changes.rewardTokensPerBlock;

}

uint256 _rewards;

(pool.accumulatedRewardsPerShare, pool.lastRewardedBlock, _rewards) =

getPoolRewardsCheckpoint(_poolId, block.number);

pool.totalUserRewards += _rewards;

return pool;

}

PUBLIC 83

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Listing 23.2 The getLatestPoolInfo function
that incorrectly calculates the staking pool’s totalUserRewards parameter

VucaStaking.sol

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

function getPoolRewardsCheckpoint(uint16 _poolId, uint256 _blockNumber)

public

view

returns (

uint256 accumulatedRewardsPerShare,

uint256 lastRewardedBlock,

uint256 rewards

)

{

Pool memory pool = pools[_poolId];

uint256 floorBlock = _blockNumber <= pool.endBlock ? _blockNumber :

pool.endBlock;

uint256 blocksSinceLastReward;

if (floorBlock >= pool.lastRewardedBlock) {

blocksSinceLastReward = floorBlock - pool.lastRewardedBlock;

}

rewards = blocksSinceLastReward * pool.rewardTokensPerBlock;

if (pool.tokensStaked > 0) {

accumulatedRewardsPerShare = pool.accumulatedRewardsPerShare + (rewards

/ pool.tokensStaked);

}

lastRewardedBlock = floorBlock;

}

Listing 23.3 The getPoolRewardsCheckpoint function that would inaccurately compute
the parameter rewards if there is no staking at the computation moment

PUBLIC 84

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend updating the getPoolRewardsCheckpoint function like the code snippet below.

The getPoolRewardsCheckpoint function would compute the parameter rewards if and only if there
must be any staking at the computation moment (L229). If there is no staking, the parameter rewards
would be 0.

VucaStaking.sol

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

function getPoolRewardsCheckpoint(uint16 _poolId, uint256 _blockNumber)

public

view

returns (

uint256 accumulatedRewardsPerShare,

uint256 lastRewardedBlock,

uint256 rewards

)

{

Pool memory pool = pools[_poolId];

uint256 floorBlock = _blockNumber <= pool.endBlock ? _blockNumber :

pool.endBlock;

if (pool.tokensStaked > 0) {

uint256 blocksSinceLastReward;

if (floorBlock >= pool.lastRewardedBlock) {

blocksSinceLastReward = floorBlock - pool.lastRewardedBlock;

}

rewards = blocksSinceLastReward * pool.rewardTokensPerBlock;

accumulatedRewardsPerShare = pool.accumulatedRewardsPerShare + (rewards

/ pool.tokensStaked);

}

lastRewardedBlock = floorBlock;

}

Listing 23.4 The improved getPoolRewardsCheckpoint function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The associated functions getRewardsWithdrawable, getLatestPoolInfo, and getPoolRewardsCheckpoint

were removed from the VucaStaking contract. Hence, this issue was closed.

PUBLIC 85

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 24 Possibly Unstaking Or Retrieving Reward Tokens Before Staking Period Ends

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 182, 319, and 342

Detailed Issue

We found some nuance validation mistakes on the staking pool’s endBlock parameter on the following

functions.

1. In the unStake function (L182 in VucaStaking.sol)

2. In the retrieveReward function (L319 in VucaStaking.sol)

3. In the withdrawERC20 function (L342 in VucaStaking.sol)

For instance, the require(pool.endBlock <= block.number, "Staking active"); statement in L182 in the

code snippet below. The root cause is that the require statement includes the case that the block.number
== pool.endBlock.

Consequently, each staking pool can be unstaked, or retrieved its reward tokens via the unStake,
retrieveReward, and withdrawERC20 functions before the staking period ends.

VucaStaking.sol

179

180

181

182

208

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

// (...SNIPPED...)

}

Listing 24.1 The unStake, one of the functions that are affected to the issue

PUBLIC 86

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend revising the associated require statements (L182, L319, and L342 in VucaStaking.sol) by

excluding the case of the block.number == pool.endBlock similar to L182 in the code snippet below.

VucaStaking.sol

179

180

181

182

208

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock < block.number, "Staking active");

// (...SNIPPED...)

}

Listing 24.2 The improved unStake function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed according to our recommendation.

PUBLIC 87

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 25 Recommended Event Emissions For Transparency And Traceability

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 312 - 332, 335 - 346, 349 - 371, and 373 - 385

Detailed Issue

We consider operations of the following state-changing functions important and require proper event

emissions for improving transparency and traceability.

● retrieveReward function (L312 - 332 in VucaStaking.sol)

● withdrawERC20 function (L335 - 346 in VucaStaking.sol)

● _updatePoolInfo function (L349 - 371 in VucaStaking.sol)

● _updatePoolRewards function (L373 - 385 in VucaStaking.sol)

Recommendations

We recommend emitting relevant events on the associated functions to improve transparency and

traceability.

Reassessment

The retrieveReward function was improved to emit a proper event, whereas the Vega Investment
Group team removed the withdrawERC20 function. For the _updatePoolInfo and
_updatePoolRewards functions, the team decided not to emit an event, nevertheless.

For this reason, this issue was considered partially fixed.

PUBLIC 88

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 26 Compiler Is Not Locked To Specific Version

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files
contracts/CrownToken.sol

contracts/VucaStaking.sol

Locations
CrownToken.sol L: 2

VucaStaking.sol L: 2

Detailed Issue

The CrownToken and VucaStaking smart contracts should be deployed with the compiler version used in the

development and testing process.

The compiler version that is not strictly locked via the pragma statement may make the contract incompatible

against unforeseen circumstances.

An example code that is not locked to a specific version (e.g., using >= or ^ directive) is shown below.

CrownToken.sol

1

2

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.15;

Listing 26.1 An example code that is not locked to a specific version

Recommendations

We recommend locking the pragma version like the example code snippet below.

pragma solidity 0.8.0;

// or

pragma solidity =0.8.0;

contract SemVerFloatingPragmaFixed {

}

PUBLIC 89

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Reference: https://swcregistry.io/docs/SWC-103

Reassessment

The Vega Investment Group team fixed this issue by locking the pragma version to v0.8.17.

PUBLIC 90

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 27 Compiler May Be Susceptible To Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files
contracts/CrownToken.sol

contracts/VucaStaking.sol

Locations
CrownToken.sol L: 2

VucaStaking.sol L: 2

Detailed Issue

The CrownToken and VucaStaking smart contracts use an outdated Solidity compiler version (v0.8.15) which

may be susceptible to publicly disclosed vulnerabilities. The latest compiler patch version is 0.8.17, which

contains the list of known bugs as the following link:

https://docs.soliditylang.org/en/v0.8.17/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some

attacks further.

An example smart contract that does not use the latest patch version is shown below.

CrownToken.sol

1

2

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.15;

Listing 27.1 An example smart contract that does not use the latest patch version (v0.8.17)

Recommendations

We recommend using the latest patch version, v0.8.17, that fixes all known bugs.

Reassessment

The Vega Investment Group team fixed this issue by applying the patch version v0.8.17.

PUBLIC 91

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 28 Lack Of Applying Pool Changes

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 209 - 227 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We discovered that the depositPoolReward function does not apply active pool changes before calculating

the parameters rewardTokenPerBlock (L213 in code snippet 28.1) and totalPoolRewards (L214).

If there are active pool changes for updating the parameters pool.endBlock and

pool.rewardTokensPerBlock pending in the queue, the resulting computed parameters

rewardTokenPerBlock (L213) and totalPoolRewards (L214) would be incorrect, leading to depositing an

incorrect amount of reward tokens to a staking pool.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PUBLIC 92

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

223

224

225

226

227

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

}

Listing 28.1 The depositPoolReward function
that does not apply active pool changes

Recommendations

We recommend updating the depositPoolReward function by invoking the _updatePoolInfo function (like
L212 in code snippet 28.2) to apply all active pool changes before calculating the parameters

rewardTokenPerBlock (L214) and totalPoolRewards (L215).

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

_updatePoolInfo(_poolId);

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

}

Listing 28.2 The improved depositPoolReward function that applies all active pool changes
before calculating the parameters rewardTokenPerBlock and totalPoolRewards

PUBLIC 93

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team reworked the depositPoolReward function, as per the code snippet below,

which also fixed this issue.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

function depositPoolReward(uint16 _poolId, uint256 _amount) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

require(_amount > 0, "Invalid amount");

_updatePoolInfo(_poolId);

pool.extension.totalPoolRewards += _amount;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

_amount);

PoolChanges memory changes;

emit PoolUpdated(2, _poolId, pools[_poolId], changes, block.number);

}

Listing 28.3 The reworked depositPoolReward function

PUBLIC 94

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 29 Incorrectly Calculating Total Pool Rewards

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 209 - 227 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We found that the formula used for calculating the parameter totalPoolRewards (L214 in code snippet 29.1)

is incorrect.

In a word, the formula includes one more block (pool.endBlock - pool.startBlock + 1) than the actual value

(pool.endBlock - pool.startBlock), leading to an incorrect pool staking period.

As a result, the incorrect staking period would require an owner to deposit more reward tokens than
the actual amount.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

PUBLIC 95

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

222

223

224

225

226

227

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

}

Listing 29.1 The depositPoolReward function that
incorrectly calculates the parameter totalPoolRewards

Recommendations

We recommend updating the associated formula (like L214 in code snippet 29.2) to correct the staking

period.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

}

Listing 29.2 The improved depositPoolReward function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 96

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Reassessment

The Vega Investment Group team reworked the depositPoolReward function, as per the code snippet below,

which also fixed this issue.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

function depositPoolReward(uint16 _poolId, uint256 _amount) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

require(_amount > 0, "Invalid amount");

_updatePoolInfo(_poolId);

pool.extension.totalPoolRewards += _amount;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

_amount);

PoolChanges memory changes;

emit PoolUpdated(2, _poolId, pools[_poolId], changes, block.number);

}

Listing 29.3 The reworked depositPoolReward function

PUBLIC 97

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 30 Incorrectly Calculating User’s Pool Rewards

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 82 - 89 and 92 - 96 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

The getRawRewards (L82 - 89 in code snippet 30.1) and getRewards (L92 - 96) are public functions
that an external caller can execute to get the user’s pool rewards.

However, we found that if the functions are externally called, they could return incorrect pool rewards

because they could operate on an outdated pool object (L84 in code snippet 30.1). In other words, if there
are active pending pool changes in the queue, the pool object loaded by the getRawRewards
function in L84 would not be updated.

As a result, the execution of the _getPoolRewards function (code snippet 30.2) in L86 in code snippet 30.1

would return an incorrectly computed pool object, making the calculation in L88 to be incorrect.

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

// rewards w/o adjustment

function getRawRewards(uint16 _poolId, address _account) public view returns

(uint256) {

Staking memory staking = stakingUsersInfo[_poolId][_account];

Pool memory pool = pools[_poolId];

pool = _getPoolRewards(pool, block.number);

return staking.accumulatedRewards + (staking.amount *

pool.accumulatedRewardsPerShare) - staking.minusRewards;

}

// rewards with adjustment

function getRewards(uint16 _poolId, address _account) public view returns

(uint256) {

PUBLIC 98

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

93

94

95

96

uint256 rawRewards = getRawRewards(_poolId, _account);

return rawRewards / (10**IERC20Helper(pools[_poolId].stakeToken).decimals())

/ REWARDS_PRECISION;

}

Listing 30.1 The getRawRewards and getRewards functions
that could return the incorrect user’s pool rewards

VucaStaking.sol

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

function _getPoolRewards(Pool memory _pool, uint256 _blockNumber) internal pure

returns (Pool memory) {

uint256 floorBlock = _blockNumber <= _pool.endBlock ? _blockNumber :

_pool.endBlock;

if (_pool.tokensStaked == 0) {

_pool.lastRewardedBlock = floorBlock;

return _pool;

}

uint256 blocksSinceLastReward;

if (floorBlock >= _pool.lastRewardedBlock) {

blocksSinceLastReward = floorBlock - _pool.lastRewardedBlock;

}

uint256 rewards = blocksSinceLastReward * _pool.rewardTokensPerBlock;

_pool.accumulatedRewardsPerShare = _pool.accumulatedRewardsPerShare +

(rewards / _pool.tokensStaked);

_pool.lastRewardedBlock = floorBlock;

_pool.extension.totalUserRewards += rewards;

return _pool;

}

Listing 30.2 The _getPoolRewards function that could incorrectly calculate
the pool object using the outdated pool’s info

PUBLIC 99

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend two possible solutions.

1. Changing the access visibility of the getRawRewards and getRewards functions to private or
internal to allow only the VucaStaking contract’s functions to execute them internally.

2. Updating the getRawRewards function by simulating the up-to-date pool object in memory
like the code snippets 30.3 and 30.4 below.

The getRawRewards function would execute the _updatePoolInfoInMemory function (L85 in
code snippet 30.3) to get the up-to-date pool object, and then pass the pool object to the
_getPoolRewards function (L86).

Code snippet 30.4 presents the functions _updatePoolInfoInMemory (L98 - 122) and
_updatePoolRewardsInMemory (L124 - 131) that simulate the up-to-date pool object in
memory.

VucaStaking.sol

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

// rewards w/o adjustment

function getRawRewards(uint16 _poolId, address _account) public view returns

(uint256) {

Staking memory staking = stakingUsersInfo[_poolId][_account];

Pool memory pool = _updatePoolInfoInMemory(_poolId);

pool = _getPoolRewards(pool, block.number);

return staking.accumulatedRewards + (staking.amount *

pool.accumulatedRewardsPerShare) - staking.minusRewards;

}

// rewards with adjustment

function getRewards(uint16 _poolId, address _account) public view returns

(uint256) {

uint256 rawRewards = getRawRewards(_poolId, _account);

return rawRewards / (10**IERC20Helper(pools[_poolId].stakeToken).decimals())

/ REWARDS_PRECISION;

}

Listing 30.3 The improved getRawRewards and getRewards functions that
calculate the user’s pool rewards using the in-memory up-to-date pool object

PUBLIC 100

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

VucaStaking.sol

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

function _updatePoolInfoInMemory(uint16 _poolId) internal view returns (Pool

memory _pool) {

_pool = pools[_poolId];

uint256 size = poolsChanges[_poolId].length;

uint256 i = _pool.extension.currentPoolChangeId;

for (; i < size; i++) {

PoolChanges memory changes = poolsChanges[_poolId][i];

uint256 updateAtBlock = changes.blockNumber + _pool.updateDelay;

if (!(_pool.endBlock > updateAtBlock && block.number >= updateAtBlock))

{

break;

}

_pool = _updatePoolRewardsInMemory(_pool, updateAtBlock);

if (changes.updateParamId == UpdateParam.MaxStakeTokens) {

_pool.maxStakeTokens = changes.updateParamValue;

} else if (changes.updateParamId == UpdateParam.EndBlock) {

_pool.endBlock = changes.updateParamValue;

} else if (changes.updateParamId == UpdateParam.RewardTokensPerBlock) {

_pool.rewardTokensPerBlock = changes.updateParamValue;

}

changes.applied = true;

}

_pool.extension.currentPoolChangeId = i;

}

function _updatePoolRewardsInMemory(Pool memory _pool, uint256 _blockNumber)

internal view returns (Pool memory) {

Pool memory newPool = _getPoolRewards(_pool, _blockNumber);

_pool.accumulatedRewardsPerShare = newPool.accumulatedRewardsPerShare;

_pool.lastRewardedBlock = newPool.lastRewardedBlock;

_pool.extension.totalUserRewards = newPool.extension.totalUserRewards;

return _pool;

}

Listing 30.4 The _updatePoolInfoInMemory and _updatePoolRewardsInMemory functions in which
simulate the up-to-date pool object in memory

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 101

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Reassessment

The Vega Investment Group team fixed this issue by changing the access visibility of the
getRawRewards and getRewards functions to internal.

PUBLIC 102

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 31 Lack Of Proper Input Sanitization Check

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Acknowledged

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 180 - 207 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We noticed that the createPool function (code snippet 31.1) lacks a proper sanitization check on the
_updateDelay parameter.

If a staking pool is created with an invalid value of the _updateDelay parameter, there is no solution for an

owner to update that pool parameter in production.

VucaStaking.sol

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

PUBLIC 103

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

200

201

202

203

204

205

206

207

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

emit PoolCreated("PoolCreated", currentPoolId, pools[currentPoolId],

block.number);

currentPoolId += 1;

}

Listing 31.1 The createPool function that
lacks a proper sanitization check on the _updateDelay parameter

Recommendations

We recommend updating the createPool function by adding the proper sanitization check similar to L192

in the code snippet below.

VucaStaking.sol

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > block.number && _startBlock < _endBlock, "Invalid

start/end block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

require(_updateDelay >= MIN_UPDATE_DELAY, "Invalid update delay");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20Helper(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PUBLIC 104

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

206

207

208

emit PoolCreated("PoolCreated", currentPoolId, pools[currentPoolId],

block.number);

currentPoolId += 1;

}

Listing 31.2 The improved createPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was acknowledged by the Vega Investment Group team. Nonetheless, the team decided not to
fix this issue because even the zero update delay is their acceptable value.

PUBLIC 105

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 32 Malfunction Of The depositPoolReward Function

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 214 - 233 (commit id: a664de1)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
a664de1b105c3013cd7d372f48db7ea2aebeb946.

We found that the depositPoolReward function does not support depositing an arbitrary amount of pool

reward tokens.

The function would compute the totalPoolRewards variable based on the pool parameters

rewardTokensPerBlock (L219 in code snippet 32.1) and endBlock (L220), which are updatable parameters.

The computed totalPoolRewards would then be used to determine the amount variable (L224). Finally, the

function would execute the safeTransferFrom function (L228) to deposit a number (specified by the

computed amount variable) of reward tokens to the pool.

Nevertheless, we discovered that the depositPoolReward function does not support the following depositing

scenario.

1. A staking pool is created using the following pool parameters: rewardTokensPerBlock = 2,
startBlock = 0, and endBlock = 10.

2. An owner executes the depositPoolReward function to deposit the pool rewards. From the pool

parameters described in Step 1, the totalPoolRewards variable would be 22.

Thus, 22 reward tokens would be transferred and locked in the VucaStaking contract.

3. An owner respectively invokes the functions updateRewardTokensPerBlock and updateEndBlock to

create two pool changes for updating the rewardTokensPerBlock parameter to 1 and the
endBlock parameter to 15.

PUBLIC 106

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

4. For the sake of understanding, let’s say both pool changes are active and applied to the pool at
block number 10.

5. An owner calls the depositPoolReward function again to deposit additional pool rewards.

In this step, the computed totalPoolRewards variable would be 16 (i.e., 1 * (15 - 0 + 1)), which is
an incorrect value (the correct value must be 25).

The incorrect totalPoolRewards variable (containing 16) causes the transaction to be
unexpectedly reverted in L222 since the depositPoolReward function considers that the 22 reward

tokens deposited in Step 1 are adequate for all stakers.

Even though the depositPoolReward function would be functioning incorrectly, an owner has a workaround

solution by transferring the reward tokens to the VucaStaking contract directly.

With the above workaround solution, nonetheless, the staking pool would not track the pool parameter
totalPoolRewards (L226). That could make an owner not be able to withdraw some locked reward
tokens (when calling the retrieveReward function) if some stakers forfeit their rewards (by calling the
emergencyWithdraw function).

VucaStaking.sol

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

_updatePoolInfo(_poolId);

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

pool.extension.totalPoolRewards = totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

PoolChanges memory changes;

emit PoolUpdated(2, currentPoolId, pools[_poolId], changes, block.number);

}

PUBLIC 107

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Listing 32.1 The depositPoolReward function that
does not support depositing an arbitrary amount of pool reward tokens

Recommendations

We recommend reworking the depositPoolReward function as per the below code snippet. The improved

function would allow an owner to deposit an arbitrary amount of pool reward tokens.

VucaStaking.sol

214

215

216

217

218

219

220

221

222

223

224

225

226

function depositPoolReward(uint16 _poolId, uint256 _amount) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

require(_amount > 0, "Invalid amount");

pool.extension.totalPoolRewards += _amount;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

_amount);

PoolChanges memory changes;

emit PoolUpdated(2, _poolId, pools[_poolId], changes, block.number);

}

Listing 32.2 The improved depositPoolReward function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue by adopting our recommended code.

PUBLIC 108

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 33 Inconsistent Error Message With The Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 247

Detailed Issue

We found an error message inconsistent with the code in the function createPool (L247 in the code snippet

below). This inconsistency can lead to misunderstanding among users or developers when maintaining the

source code.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

265

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

// (...SNIPPED...)

}

Listing 33.1 The createPool function with an inconsistent error message

PUBLIC 109

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend revising the associated error message to reflect the actual code like L247 in the code

snippet below.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

265

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid staking token");

// (...SNIPPED...)

}

Listing 33.2 The improved createPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue according to our suggestion.

PUBLIC 110

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 34 Inconsistent Event Emission With The Code #1

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 263

Detailed Issue

We found the event emission inconsistent with the operation of the createPool function (L263 in the code

snippet below). The inconsistent event may lead to misunderstanding among developers or users when

tracing the function’s event log.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PUBLIC 111

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

260

261

262

263

264

265

PoolChanges memory changes;

emit PoolUpdated(currentPoolId, pools[currentPoolId], changes,

block.number);

currentPoolId += 1;

}

Listing 34.1 The inconsistent event emission in the createPool function

Recommendations

We recommend emitting the new event to be consistent with the createPool function as shown in L263

in the code snippet below.

VucaStaking.sol

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

function createPool(

address _rewardToken,

address _stakeToken,

uint256 _maxStakeTokens,

uint256 _startBlock,

uint256 _endBlock,

uint256 _rewardTokensPerBlock,

uint32 _updateDelay

) external onlyOwner {

require(_startBlock > 0 && _startBlock < _endBlock, "Invalid start/end

block");

require(_rewardToken != address(0), "Invalid reward token");

require(_stakeToken != address(0), "Invalid reward token");

pools[currentPoolId].inited = true;

pools[currentPoolId].rewardToken = _rewardToken;

pools[currentPoolId].stakeToken = _stakeToken;

pools[currentPoolId].maxStakeTokens = _maxStakeTokens;

pools[currentPoolId].startBlock = _startBlock;

pools[currentPoolId].endBlock = _endBlock;

pools[currentPoolId].rewardTokensPerBlock = _rewardTokensPerBlock *

(10**IERC20(_stakeToken).decimals()) * REWARDS_PRECISION;

pools[currentPoolId].lastRewardedBlock = _startBlock;

pools[currentPoolId].updateDelay = _updateDelay; // = 8 hours;

PoolChanges memory changes;

emit PoolCreated(currentPoolId, pools[currentPoolId], block.number);

currentPoolId += 1;

PUBLIC 112

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

265 }

Listing 34.2 The improved event in the createPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue according to our recommendation.

PUBLIC 113

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 35 Recommended Enforcing Checks-Effects-Interactions Pattern

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 153 - 176 and 179 - 208

Detailed Issue

We noticed that the functions emergencyWithdraw (code snippet 35.1) and unStake (code snippet 35.2)

do not follow the checks-effects-interactions pattern, which is the best practice coding style to prevent

potential reentrancy attacks.

In L169 in the code snippet 35.1 below, for example, the emergencyWithdraw function transfers a staking

token back to a staker (interactions part) before updating state variables (effects part) in L171 - 175.

Even if there are no reentrancy issues, we recommend that both functions should be enforced the

checks-effects-interactions pattern.

VucaStaking.sol

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

function emergencyWithdraw(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Update pool

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

staking.amount = 0;

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

PUBLIC 114

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

172

173

174

175

176

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

}

Listing 35.1 The emergencyWithdraw function
without enforcing the checks-effects-interactions pattern

VucaStaking.sol

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Pay rewards

uint256 rewards = getRewards(_poolId, msg.sender);

IERC20(pool.rewardToken).transfer(msg.sender, rewards);

// Update pool

pool.rewardsWithdrew += getRawRewards(_poolId, msg.sender);

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

}

Listing 35.2 The unStake function
without enforcing the checks-effects-interactions pattern

PUBLIC 115

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Recommendations

We recommend enforcing the checks-effects-interactions pattern to both emergencyWithdraw (code

snippet 35.3) and unStake (code snippet 35.4) functions.

To fix this issue in detail, we moved the interactions part (the transfer function in L175 in the below code

snippet 35.3) to get executed after the effects part (L168 - 172).

VucaStaking.sol

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

function emergencyWithdraw(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

_updatePoolRewards(_poolId, block.number);

// Update pool

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

staking.amount = 0;

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

}

Listing 35.3 The improved emergencyWithdraw function
enforcing the checks-effects-interactions pattern

VucaStaking.sol

179

180

181

182

183

184

185

186

187

function unStake(uint16 _poolId) external {

_updatePoolInfo(_poolId);

Pool storage pool = pools[_poolId];

require(pool.endBlock <= block.number, "Staking active");

Staking storage staking = stakingUsersInfo[_poolId][msg.sender];

uint256 amount = staking.amount;

require(staking.amount > 0, "Insufficient funds");

PUBLIC 116

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

_updatePoolRewards(_poolId, block.number);

uint256 rewards = getRewards(_poolId, msg.sender);

// Update pool

pool.rewardsWithdrew += getRawRewards(_poolId, msg.sender);

if (pool.tokensStaked >= amount) {

pool.tokensStaked -= amount;

}

emit StakingChanged(msg.sender, _poolId, pool, staking);

// Update staker

staking.accumulatedRewards = 0;

staking.minusRewards = 0;

staking.amount = 0;

// Pay rewards

IERC20(pool.rewardToken).transfer(msg.sender, rewards);

// Withdraw tokens

IERC20(pool.stakeToken).transfer(address(msg.sender), amount);

}

Listing 35.4 The improved unStake function
enforcing the checks-effects-interactions pattern

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team fixed this issue by enforcing the checks-effects-interactions pattern.

PUBLIC 117

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

No. 36 Inconsistent Event Emission With The Code #2

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files contracts/VucaStaking.sol

Locations VucaStaking.sol L: 209 - 227 (commit id: 5cc2e3f)

Detailed Issue

This issue was raised during the reassessment phase at the commit id:
5cc2e3fcb2a4268bd97e6e02395bac08b592a91d.

We found an event emission inconsistent with the operation of the depositPoolReward function
(L226 in code snippet 36.1). The inconsistent event may lead to misunderstanding among developers or

users when tracing the function’s event log.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

PoolChanges memory changes;

emit PoolUpdated("PoolUpdated", currentPoolId, pools[_poolId], changes,

block.number);

PUBLIC 118

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

227 }

Listing 36.1 The inconsistent event emission in the depositPoolReward function

Recommendations

We recommend emitting the new relevant event to be consistent with the depositPoolReward function
as shown in L224 in the code snippet below.

VucaStaking.sol

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

function depositPoolReward(uint16 _poolId) public {

Pool storage pool = pools[_poolId];

require(pool.inited, "Pool invalid");

uint256 rewardTokenPerBlock = pool.rewardTokensPerBlock /

(10**IERC20Helper(pool.stakeToken).decimals()) / REWARDS_PRECISION;

uint256 totalPoolRewards = rewardTokenPerBlock * (pool.endBlock -

pool.startBlock + 1);

require(totalPoolRewards > pool.extension.totalPoolRewards, "Already

deposited");

uint256 amount = totalPoolRewards - pool.extension.totalPoolRewards;

IERC20(pool.rewardToken).safeTransferFrom(msg.sender, address(this),

amount);

pool.extension.totalPoolRewards = totalPoolRewards;

emit PoolRewardDeposited(_poolId, amount, totalPoolRewards, block.number);

}

Listing 36.2 The improved event in the depositPoolReward function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Vega Investment Group team acknowledged this issue but decided not to fix it because the current
implementation emits event parameters expected by their off-chain web services.

PUBLIC 119

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

Appendix

About Us

Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of

cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract

security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in the areas of private and

public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes

recommendations on smart contracts' security and gas optimization to bring the most benefit to users and

platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 120

Vega Investment Group Limited - CrownToken and VucaStaking - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 121

