
PlayToEarn
NFTMarketplace
Smart Contract Audit Report

Date Issued: 11 Jan 2022

Version: Final v1.0

PlayToEarn - NFTMarketplace - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About NFTMarketplace 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 12

Appendix 55
About Us 55
Contact Information 55
References 56

PUBLIC 2

PlayToEarn - NFTMarketplace - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the NFTMarketplace feature.
This audit report was published on 11 Jan 2022. The audit scope is limited to the NFTMarketplace feature.
Our security best practices strongly recommend that the PlayToEarn team conduct a full security audit for
both on-chain and off-chain components of its infrastructure and their interaction. A comprehensive
examination has been performed during the audit process utilizing Valix’s Formal Verification, Static Analysis,
and Manual Review techniques.

About NFTMarketplace

PlayToEarn Marketplace is where gamers can easily trade NFTs from beloved games and support the
game developers. Users can easily search through the entire marketplace to find what they want. The
platform provides a detailed description of each NFT as well as market conditions for the most informed
decision. These NFTs can be redeemed in our partners’ ecosystem to put those items in use. Game creators
can earn market fees from listing their game NFTs on our marketplace with high customization capabilities to
provide the most smooth experience for gamers.

Scope of Work

The security audit conducted does not replace the full security audit of the overall PlayToEarn protocol. The
scope is limited to the NFTMarketplace feature and their related smart contracts.

The security audit covered the components at this specific state:

Item Description

Components
▪ NFTMarketplace smart contract

▪ Imported associated smart contracts and libraries

GitHub Repository
▪ https://github.com/playtoearndev/playtoearn-nft-marketplace-contra

cts

Commit ▪ c5f93fbfa90791e4772f74f2cb423735f914c098

Reassessment Commit ▪ 871b45d44067c84a4495af2cdc1dc313c975c48e

Audited Files ▪ contracts/NFTMarketplace.sol

PUBLIC 3

PlayToEarn - NFTMarketplace - Smart Contract Audit

Excluded Files/Contracts -

Remark: Our security best practices strongly recommend that the PlayToEarn team conduct a full security
audit for both on-chain and off-chain components of its infrastructure and the interaction between them.

PUBLIC 4

PlayToEarn - NFTMarketplace - Smart Contract Audit

Auditors

Phuwanai Thummavet

Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a
single point in time. As such, the scope was limited to current known risks during the work period. The review
does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred
percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided
code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or
“endorsement” of any particular project. This audit report should also not be used as investment advice nor
provide any legal compliance.

PUBLIC 5

PlayToEarn - NFTMarketplace - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the
NFTMarketplace feature has sufficient security protections to be safe for use.

11 Jan 2022

Initially, Valix was able to identify 18 issues that were categorized from the “Critical” to “Informational” risk
level in the given timeframe of the assessment. For the reassessment, the PlayToEarn team fully fixed 17
issues and partially fixed 1 medium issue. Below is the breakdown of the vulnerabilities found and their
associated risk rating for each assessment conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

NFTMarketplace 1 3 7 3 4 0 0 1 0 0

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

PlayToEarn - NFTMarketplace - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test
Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual
and automated review approaches can be mixed and matched, including business logic analysis in terms of
the malicious doer's perspective. Using automated scanning tools to navigate or find offending software
patterns in the codebase along with a purely manual or semi-automated approach, where the analyst
primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

PlayToEarn - NFTMarketplace - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

PlayToEarn - NFTMarketplace - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

PlayToEarn - NFTMarketplace - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,
Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are
presented in the table.

Risk Level Definition

Critical The code implementation does not match the specification, and it could disrupt the
platform.

High The code implementation does not match the specification, or it could result in the loss
of funds for contract owners or users.

Medium The code implementation does not match the specification under certain conditions, or it
could affect the security standard by losing access control.

Low The code implementation does not follow best practices or use suboptimal design
patterns, which may lead to security vulnerabilities further down the line.

Informational Findings in this category are informational and may be further improved by following best
practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as
illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.
● Impact measures the technical loss and business damage of a successful attack.
● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels
"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the
risk to an acceptable level.

PUBLIC 10

PlayToEarn - NFTMarketplace - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Potential Theft Of All NFT Assets Critical Fixed In use

2 Selling NFT Assets Without Updating Remaining
Amount High Fixed In use

3 Contract Parameters Can Be Adjusted Without Time
Delay High Fixed In use

4 Existence Of Risky Function High Fixed In use

5 Invalid Struct Design Medium Fixed In use

6 Possible Denial Of Service On NFT Data Querying Medium Fixed In use

7 Unsafe Function Use Medium Fixed In use

8 Setting Fee Without Limit Medium Fixed In use

9 Possibly Permanent Ownership Removal Medium Fixed In use

10 Unsafe Ownership Transfer Medium Fixed In use

11 Improper NFT Data Querying Medium Partially Fixed In use

12 No Input Sanitization Checks Low Fixed In use

13 The Compiler Is Not Locked To A Specific Version Low Fixed In use

14 The Compiler May Be Susceptible To The Publicly
Disclosed Bugs Low Fixed In use

15 Recommended Gas Optimization Informational Fixed In use

16 Misleading Struct Field Informational Fixed In use

17 Misleading State Variable Informational Fixed In use

18 Inconsistent Comment With The Code Informational Fixed In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 11

PlayToEarn - NFTMarketplace - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Potential Theft Of All NFT Assets

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 161 - 214 and 216 - 250

Detailed Issue

We found the critical vulnerability on the buyMarketItem (L161 - 214) and unlistMarketItem (L216 - 250)
functions that enable an attacker to steal all NFT assets on the marketplace. For brevity’s sake, we will
explain this issue by describing the case of the buyMarketItem function since the vulnerability on the
unlistMarketItem function is almost identical.

Consider the following attack scenario.

1. Bob places his NFT assets for trading by executing the function createMarketItem(nftContract:

0xabc..012, tokenId: 1, price: 500, amount: 10). As an execution result, the function
generates a sequent id itemId: 1 for Bob’s NFT assets.

2. The attacker sees Bob’s NFT assets on the marketplace. The attacker then creates the forged NFT
assets by calling the function createMarketItem(nftContract: 0xdef..666, tokenId: 1,

price: 1, amount: 10). Note that 0xdef..666 is the NFT contract address imitated for stealing
Bob’s NFT assets created in Step 1. The function generates the next id itemId: 2 for the attacker’s
NFT assets as an execution result.

3. The attacker manages to steal Bob’s NFT assets by invoking the function
buyMarketItem(nftContract: 0xabc..012, itemId: 2, amount: 10). Consequently, the
attacker can steal Bob’s NFT assets (itemId: 1) by manipulating the nftContract parameter.

The root cause of this issue is that the attacker can manipulate the nftContract parameter (L162 in the
code snippet below) by specifying an address of Bob’s NFT contract (0xabc..012) whereas specifying the
forged NFT assets (itemId: 2) to bypass the computation from L166 to L182.

Eventually, the buyMarketItem function will transfer the managed NFT assets from the NFTMarketplace

contract to the attacker address (L184 - 190).

PUBLIC 12

PlayToEarn - NFTMarketplace - Smart Contract Audit

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

PUBLIC 13

PlayToEarn - NFTMarketplace - Smart Contract Audit

210

211

212

213

214

amount,

sold,

false

);

}

Listing 1.1 The buyMarketItem function that is vulnerable to NFT theft

Recommendations

We recommend updating both the buyMarketItem (L161 - 214) and unlistMarketItem (L216 - 250)
functions by employing the idToMarketItem[itemId].nftContract instead of the manipulatable
parameter nftContract (L183) and removing the parameter nftContract from the functions like the code
snippet below.

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

function buyMarketItem(

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(idToMarketItem[itemId].nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

PUBLIC 14

PlayToEarn - NFTMarketplace - Smart Contract Audit

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 1.2 The improved buyMarketItem function

Reassessment

The PlayToEarn team fixed this issue by employing the idToMarketItem[itemId].nftContract instead of
the manipulatable parameter nftContract and removing the parameter nftContract from the associated
functions according to our recommendation.

PUBLIC 15

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 2 Selling NFT Assets Without Updating Remaining Amount

Risk High
Likelihood High

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 161 - 214

Detailed Issue

As shown in the code snippet below, we found that the buyMarketItem function sells NFT assets without
updating the remaining amount. This inconsistent record may lead to unexpected errors or even
denial-of-service issues to the platform.

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

PUBLIC 16

PlayToEarn - NFTMarketplace - Smart Contract Audit

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 2.1 The buyMarketItem function sells NFT assets without updating the remaining amount

Recommendations

We recommend updating the remaining amount after NFT assets are purchased, like the example code
snippet below (L197 - 198).

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

PUBLIC 17

PlayToEarn - NFTMarketplace - Smart Contract Audit

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

idToMarketItem[itemId].amount = idToMarketItem[itemId].amount.sub(amount);

if (idToMarketItem[itemId].amount == 0) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 2.2 The improved buyMarketItem function

Reassessment

The PlayToEarn team fixed this issue according to our recommendation.

PUBLIC 18

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 3 Contract Parameters Can Be Adjusted Without Time Delay

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 103 - 106 and 112 - 115

Detailed Issue

The developer can adjust the contract parameters immediately, affecting the platform’s trustworthiness and
raising concerns to users.

The code snippet below shows the setFee and setCurrency functions that allow the developer to adjust the
fee and currency token freely. We consider that changing the fee or currency token can affect the
value of users’ NFT assets in the marketplace.

NFTMarketplace.sol

103

104

105

106

112

113

114

115

function setFee(uint256 fee) public onlyOwner {

_fee = fee;

emit SetFee(fee);

}

(...SNIP...)

function setCurrency(address currency) public onlyOwner {

_currency = IERC20(currency);

emit SetCurrency(currency);

}

Listing 3.1 The setFee and setCurrency functions enable the developer
to adjust the fee and currency token freely

PUBLIC 19

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend applying the Timelock contract to the NFTMarketplace contract. The relationship between
each entity should be as follows:

Developer address -> Timelock -> NFTMarketplace

Every time a developer adjusts any contract parameters, the Timelock will defer the transaction for some
waiting period (e.g., 48 hours) configured. This enables users to examine what parameters the developer
wants to adjust before effective, providing transparency.

Reassessment

The PlayToEarn team would fix this issue by employing the OpenZeppelin Defender to deploy the
Timelock for the NFTMarketplace contract.

PUBLIC 20

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 4 Existence Of Risky Function

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 112 - 115

Detailed Issue

The developer can change a currency token used as the medium of exchange for NFT trading through the
setCurrency function (L112), as shown in the code snippet below.

NFTMarketplace.sol

112

113

114

115

function setCurrency(address currency) public onlyOwner {

_currency = IERC20(currency);

emit SetCurrency(currency);

}

Listing 4.1 The setCurrency function allows the developer to change the currency token

We found that the change of currency token via the setCurrency function can affect the value of users’
NFT assets on the marketplace. Let’s consider the following scenario to understand this issue.

1. The developer deploys the NFTMarketplace contract and sets the BNB token (via a contract

constructor) as the medium of exchange.

2. Bob places his NFT asset and sets its price at 1 BNB (assuming that 1 BNB equals $600) for sale on
the marketplace.

3. The developer changes the currency token from BNB to USDT token via the setCurrency function.

4. Bob’s NFT asset value is lowered from $600 to $1 immediately.

5. Alice sells Bob’s NFT with 1 USDT.

We consider changing the currency token while there are NFT assets open for sale on the marketplace
dangerous. In other words, the marketplace should use the fixed currency token.

PUBLIC 21

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We consider the setCurrency function risky for the platform and recommend removing it from the
NFTMarketplace contract. The contract should use the fixed currency token.

Reassessment

According to our recommendation, the PlayToEarn team fixed this issue by removing the setCurrency

function from the NFTMarketplace contract.

PUBLIC 22

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 5 Invalid Struct Design

Risk Medium
Likelihood High

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 32 - 42, 161 - 214, 287 - 302 and 312 - 333

Detailed Issue

Since the NFTMarketplace contract supports multi-asset trading on the same item id, multiple users can
own assets on the same item id. However, our investigation found that the MarketItem struct (L32 - 42 in the
code snippet 5.1) used to track NFT assets of each token id has an invalid design.

The MarketItem struct supports only a single owner tracking at a time (L37 in the code snippet 5.1). Let’s
consider the buyMarketItem function (L192 in the code snippet 5.2). The buyMarketItem function will
overwrite the NFT owner every time the remaining assets are purchased.

This invalid struct design may lead to incorrect querying results of the following functions.

1. getMarketItems function (L287 - 302)

2. fetchPurchasedNFTs function (L312 - 333)

The code snippet 5.3 shows one of the affected functions, fetchPurchasedNFTs, that may return incorrect
querying results because of the invalid struct design.

NFTMarketplace.sol

32

33

34

35

36

37

38

39

40

41

42

struct MarketItem {

uint256 itemId;

address nftContract;

uint256 tokenId;

address seller;

address owner;

uint256 price;

uint256 amount;

bool isSold;

bool isUnlisted;

}

Listing 5.1 The MarketItem struct supporting only a single owner

PUBLIC 23

PlayToEarn - NFTMarketplace - Smart Contract Audit

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

PUBLIC 24

PlayToEarn - NFTMarketplace - Smart Contract Audit

209

210

211

212

213

214

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 5.2 The buyMarketItem function will overwrite the NFT owner
every time the remaining assets are purchased

NFTMarketplace.sol

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

function fetchPurchasedNFTs() public view returns (MarketItem[] memory) {

uint256 totalItemCount = _itemIds.current();

uint256 itemCount = 0;

uint256 currentIndex = 0;

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].owner == msg.sender) {

itemCount += 1;

}

}

MarketItem[] memory marketItems = new MarketItem[](itemCount);

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].owner == msg.sender) {

uint256 currentId = idToMarketItem[i + 1].itemId;

MarketItem storage currentItem = idToMarketItem[currentId];

marketItems[currentIndex] = currentItem;

currentIndex += 1;

}

}

return marketItems;

}

Listing 5.3 The fetchPurchasedNFTs function may return incorrect querying results

PUBLIC 25

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend re-designing/implementing the MarketItem struct to support multiple owners tracking. The
code snippet below shows an example solution to multi-owner tracking.

NFTMarketplace.sol

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

struct OwnerInfo {

address owner;

uint256 amount;

}

struct MarketItem {

uint256 itemId;

address nftContract;

uint256 tokenId;

address seller;

OwnerInfo[] ownerInfo;

uint256 price;

uint256 amount;

bool isSold;

bool isUnlisted;

}

Listing 5.4 The MarketItem struct that supports multiple owners tracking

Reassessment

The PlayToEarn team fixed this issue by tracking multiple owners under the same item id as the code snippet
below.

NFTMarketplace.sol

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

struct OwnerInfo {

address owner;

uint256 amount;

uint256 atBlock;

}

struct MarketItem {

uint256 itemId;

address nftContract;

uint256 tokenId;

address seller;

mapping(uint256 => OwnerInfo) ownerInfo;

Counters.Counter ownerInfoCount;

uint256 price;

uint256 amount;

bool isSold;

bool isUnlisted;

PUBLIC 26

PlayToEarn - NFTMarketplace - Smart Contract Audit

53 }

Listing 5.5 The fixed MarketItem struct

PUBLIC 27

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 6 Possible Denial Of Service On NFT Data Querying

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 287 - 302, 312 - 333, and 335 - 356

Detailed Issue

On the NFTMarketplace platform, the number of NFT assets placed for trading might grow over time. With
this assumption, we found that the following view functions might confront a denial-of-service issue if the
number of NFT assets on the marketplace is too large.

The affected functions include:

1. getMarketItems function (L287 - 302)

2. fetchPurchasedNFTs function (L312 - 333)

3. fetchCreateNFTs function (L335 - 356)

The root cause of this issue is that the affected functions have to iterate over all NFT assets (L293, L317,
L324, L340, and L347 in the code snippet below), which might take too long for querying on the EVM node,
leading to the rejection of querying request.

PUBLIC 28

PlayToEarn - NFTMarketplace - Smart Contract Audit

NFTMarketplace.sol

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

function getMarketItems() public view returns (MarketItem[] memory) {

uint256 itemCount = _itemIds.current();

uint256 unsoldItemCount = _itemIds.current() - _itemsSold.current();

uint256 currentIndex = 0;

MarketItem[] memory marketItems = new MarketItem[](unsoldItemCount);

for (uint256 i = 0; i < itemCount; i++) {

if (idToMarketItem[i + 1].owner == address(0)) {

uint256 currentId = idToMarketItem[i + 1].itemId;

MarketItem storage currentItem = idToMarketItem[currentId];

marketItems[currentIndex] = currentItem;

currentIndex += 1;

}

}

return marketItems;

}

(...SNIP...)

function fetchPurchasedNFTs() public view returns (MarketItem[] memory) {

uint256 totalItemCount = _itemIds.current();

uint256 itemCount = 0;

uint256 currentIndex = 0;

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].owner == msg.sender) {

itemCount += 1;

}

}

MarketItem[] memory marketItems = new MarketItem[](itemCount);

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].owner == msg.sender) {

uint256 currentId = idToMarketItem[i + 1].itemId;

MarketItem storage currentItem = idToMarketItem[currentId];

marketItems[currentIndex] = currentItem;

currentIndex += 1;

}

}

return marketItems;

}

function fetchCreateNFTs() public view returns (MarketItem[] memory) {

uint256 totalItemCount = _itemIds.current();

uint256 itemCount = 0;

uint256 currentIndex = 0;

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].seller == msg.sender) {

PUBLIC 29

PlayToEarn - NFTMarketplace - Smart Contract Audit

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

itemCount += 1; // No dynamic length. Predefined length has to be made

}

}

MarketItem[] memory marketItems = new MarketItem[](itemCount);

for (uint256 i = 0; i < totalItemCount; i++) {

if (idToMarketItem[i + 1].seller == msg.sender) {

uint256 currentId = idToMarketItem[i + 1].itemId;

MarketItem storage currentItem = idToMarketItem[currentId];

marketItems[currentIndex] = currentItem;

currentIndex += 1;

}

}

return marketItems;

}

Listing 6.1 The getMarketItems, fetchPurchasedNFTs, and fetchCreateNFTs functions
that are prone to the denial-of-service issue

Recommendations

We recommend two possible solutions. The first solution is to apply pagination for data querying, in which
the large querying data are divided into smaller discrete pages.

The second solution is to employ different arrays for tracking different NFT assets of interest. For example,
using different arrays to track assets available for sale, purchased assets, and assets created by a specific
seller.

Reassessment

According to our suggestion, the PlayToEarn team fixed this issue by applying pagination for data querying.
Our further recommendation is to make query calls at the same block number for consistent querying results.

Unfortunately, we found a further issue with the improved functions during the reassessment of this issue.
Please refer to issue no. 11 for more details.

PUBLIC 30

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 7 Unsafe Function Use

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 182 and 195

Detailed Issue

The buyMarketItem function uses an unsafe ERC-20 transferFrom function (L182 and L195 in the code
snippet below) that can lead to unexpected ERC-20 transfer errors.

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.transferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

PUBLIC 31

PlayToEarn - NFTMarketplace - Smart Contract Audit

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.transferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 7.1 The buyMarketItem function uses an unsafe transferFrom function

Recommendations

We recommend applying the safeTransferFrom function of the SafeERC20 library instead for safe ERC-20
transfer, as shown in L182 and L195 in the code snippet below.

NFTMarketplace.sol

161

162

163

164

165

166

167

168

169

170

171

172

173

function buyMarketItem(

address nftContract,

uint256 itemId,

uint256 amount

) public nonReentrant {

uint256 price = idToMarketItem[itemId].price;

uint256 tokenId = idToMarketItem[itemId].tokenId;

uint256 fee = calculateFee(amount, price);

require(amount > 0, "Amount must > 0");

require(

idToMarketItem[itemId].amount >= amount,

"Insufficient market item amount"

PUBLIC 32

PlayToEarn - NFTMarketplace - Smart Contract Audit

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

);

require(idToMarketItem[itemId].isSold != true, "This item is sold");

require(idToMarketItem[itemId].isUnlisted != true, "This item is unlisted");

uint256 cost = idToMarketItem[itemId].price.mul(amount).sub(fee);

require(_currency.balanceOf(msg.sender) >= cost, "Insufficient currency");

// Transfer currency to contract owner

_currency.safeTransferFrom(msg.sender, idToMarketItem[itemId].seller, cost);

IERC1155(nftContract).safeTransferFrom(

address(this),

msg.sender,

tokenId,

amount,

"0x0"

);

idToMarketItem[itemId].owner = msg.sender;

// Transfer fee to contract owner

_currency.safeTransferFrom(msg.sender, owner(), fee);

bool sold = idToMarketItem[itemId].amount == amount;

if (sold) {

idToMarketItem[itemId].isSold = true;

_itemsSold.increment();

}

emit MarketItemSold(

itemId,

nftContract,

idToMarketItem[itemId].tokenId,

idToMarketItem[itemId].seller,

idToMarketItem[itemId].owner,

idToMarketItem[itemId].price,

amount,

sold,

false

);

}

Listing 7.2 The improved buyMarketItem function that uses the safeTransferFrom function

Reassessment

The PlayToEarn team fixed this issue as per our recommendation.

PUBLIC 33

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 8 Setting Fee Without Limit

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 27 - 30 and 103 - 106

Detailed Issue

The change of platform fee affects the income of users directly. However, the developer can set the
platform fee without limit through the constructor (L27 - 30) and setFee (L103 - 106) function, as
shown in the code snippet below.

NFTMarketplace.sol

27

28

29

30

103

104

105

106

constructor(IERC20 currency, uint256 listingFee) {

_currency = currency;

_fee = listingFee;

}

(...SNIP...)

function setFee(uint256 fee) public onlyOwner {

_fee = fee;

emit SetFee(fee);

}

Listing 8.1 The constructor and setFee function allowing the developer
to set the platform fee without limit

PUBLIC 34

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend limiting the scope of platform fee in the constructor (L27 - 30) and setFee function
(L103 - 106) so that the developer cannot set the fee too high.

For example, we can scope the fee range in between 0 > fee <= 100 range as the following code snippet.

NFTMarketplace.sol

103

104

105

106

107

108

function setFee(uint256 fee) public onlyOwner {

require(fee > 0, "Fee must be more than 0");

require(fee <= 100, "Fee must be less than or equal to 100");

_fee = fee;

emit SetFee(fee);

}

Listing 8.2 Example of the setFee function with fee scope checks

Reassessment

The PlayToEarn team fixed this issue by limiting the scope of the platform fee as the below code snippet.

NFTMarketplace.sol

154

155

156

157

158

159

160

function setFee(uint256 _fee) external onlyOwner {

uint256 listingFee = _fee.mul(100).div(FEE_DENOMINATOR);

require(listingFee >= 0, "Fee must not be less than 0");

require(listingFee <= 100, "Fee must not be more than 100");

fee = _fee;

emit SetFee(listingFee);

}

Listing 8.3 The fixed setFee function

PUBLIC 35

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 9 Possibly Permanent Ownership Removal

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 53 - 55

Detailed Issue

The NFTMarketplace contract inherits from the Ownable abstract contract. The Ownable contract
implements the renounceOwnership function, which can remove the ownership of the contract permanently.

If the contract owner mistakenly invokes the renounceOwnership function, they will immediately lose
ownership of the contract, and this action cannot be undone.

The code snippet below shows the renounceOwnership function of the Ownable contract.

Ownable.sol

53

54

55

66

67

68

69

70

function renounceOwnership() public virtual onlyOwner {

_setOwner(address(0));

}

(...SNIP...)

function _setOwner(address newOwner) private {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 9.1 The renounceOwnership function that can remove the ownership of the contract permanently

Recommendations

We consider the renounceOwnership function risky, and the contract owner should use this function with
extra care.

If possible, we recommend removing or disabling this function from the contract.

PUBLIC 36

PlayToEarn - NFTMarketplace - Smart Contract Audit

Reassessment

The PlayToEarn team fixed this issue by disabling the renounceOwnership function.

NFTMarketplace.sol

128

129

130

function renounceOwnership() public view override onlyOwner {

revert("Renounce ownership not allowed");

}

Listing 9.2 The disabled renounceOwnership function

PUBLIC 37

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 10 Unsafe Ownership Transfer

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 61 - 64

Detailed Issue

The NFTMarketplace contract inherits from the Ownable abstract contract. The Ownable contract
implements the transferOwnership function, which can transfer the ownership of the contract from the
current owner to another owner.

The code snippet below shows the transferOwnership function of the Ownable contract.

Ownable.sol

61

62

63

64

65

66

67

68

69

70

function transferOwnership(address newOwner) public virtual onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the zero address");

_setOwner(newOwner);

}

function _setOwner(address newOwner) private {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 10.1 The transferOwnership function that has an unsafe ownership transfer

From the code snippet above, the address variable newOwner (L61) may be incorrectly specified by the
current owner by mistake; for example, an address that a new owner does not own was inputted.
Consequently, the new owner loses ownership of the contract immediately, and this action is unrecoverable.

PUBLIC 38

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend applying the two-step ownership transfer mechanism as shown in the code snippet below.

NFTMarketplace.sol

358

359

360

361

362

363

364

365

366

367

368

369

370

371

function transferOwnership(address _candidateOwner) external override onlyOwner

{

require(_candidateOwner != address(0), "Ownable: candidate owner is the zero

address");

candidateOwner = _candidateOwner;

emit NewCandidateOwner(_candidateOwner);

}

function claimOwnership() external {

require(candidateOwner == msg.sender, "Ownable: transaction submitter is not

the candidate owner");

address oldOwner = owner;

owner = candidateOwner;

candidateOwner = address(0);

emit OwnershipTransferred(oldOwner, owner);

}

Listing 10.2 The two-step ownership transfer mechanism

This mechanism works as follows.

1. The current owner invokes the transferOwnership function by specifying the candidate owner
address _candidateOwner (L358).

2. The candidate owner proves access to his account and claims the ownership transfer by invoking
the claimOwnership function (L364).

The recommended mechanism ensures that the ownership of the contract would be transferred to another
owner who can access his account only.

Reassessment

The PlayToEarn team fixed this issue by applying the two-step ownership transfer mechanism as our
recommendation.

PUBLIC 39

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 11 Improper NFT Data Querying

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Partially Fixed

Associated Files
(at commit: 6695f55e42a70dc50e7694bbb6ff42de43b7bbf8)

contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 361 - 396, 416 - 467, and 469 - 506

Detailed Issue

This issue was raised during the reassessment of the issue no. 6 at the commit: 6695f55

e42a70dc50e7694bbb6ff42de43b7bbf8.

The affected functions include:

1. getMarketItems function (L361 - 396)

2. fetchPurchasedNFTs function (L416 - 467)

3. fetchCreateNFTs function (L469 - 506)

We found some querying bugs in the affected functions as follows.

Bug #1: Overabundant array allocation

This bug affects only the getMarketItems function. We found that the function might allocate memory (L371
- 373 in the code snippet 11.1) for the return variable beyond necessity. The marketItems variable allocates
memory based on the current number of items selling on the platform (L372) which could be more than the
maximum return array elements only limited to 100 (L368).

Subsequently, the function caller (e.g., client) would receive the return data polluted with the empty array
elements. In the worst case, moreover, if the number of selling items is too big, the EVM node may refuse to
process the query.

Bug #2: Incorrect paging calculation

This bug affects all three functions: getMarketItems, fetchPurchasedNFTs, and fetchCreateNFTs. Like
the following, the affected functions iterate over items (L374, L428, L443, L481, and L488).

for (uint256 i = limit.mul(page).sub(limit); i < limit.mul(page); i++) {

…
}

PUBLIC 40

PlayToEarn - NFTMarketplace - Smart Contract Audit

Consider the following scenario to understand why the paging calculation may be incorrect.

● 1st call: getMarketItems(page = 1, limit = 5) would return marketItems[0, 1, 2, 3, 4]
(correct item sequence)

● 2nd call: getMarketItems(page = 2, limit = 5) would return marketItems[5, 6, 7, 8, 9]
(correct item sequence)

● 3rd call: getMarketItems(page = 3, limit = 6) would return marketItems[12, 13, 14, 15, 16, 17]
(incorrect item sequence)

As you can see, when we change the limit from 5 to 6, the function returns the incorrect item sequence.

Bug #3: Empty return elements

This bug affects only the getMarketItems function. The function iterates over items based on the inputted
variables page and limit as follows.

for (uint256 i = limit.mul(page).sub(limit); i < limit.mul(page); i++) {

if (

!idToMarketItem[i + 1].isSold &&

!idToMarketItem[i + 1].isUnlisted &&

idToMarketItem[i + 1].itemId > 0

) {

…
}

}

We found that the function would skip the sold-out or unlisted items (L376 - 378), resulting in returning some
empty elements to the function caller.

NFTMarketplace.sol

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

function getMarketItems(uint256 page, uint256 limit)

public

view

returns (MarketItemView[] memory)

{

require(page > 0, "Page must be more than 0");

require(limit > 0, "Limit must be more than 0");

require(limit <= 100, "Max limit reached");

uint256 currentIndex = 0;

MarketItemView[] memory marketItems = new MarketItemView[](

itemsSelling.current()

);

for (uint256 i = limit.mul(page).sub(limit); i < limit.mul(page); i++) {

if (

!idToMarketItem[i + 1].isSold &&

!idToMarketItem[i + 1].isUnlisted &&

idToMarketItem[i + 1].itemId > 0

PUBLIC 41

PlayToEarn - NFTMarketplace - Smart Contract Audit

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

) {

uint256 currentId = idToMarketItem[i + 1].itemId;

MarketItemView memory currentItem = MarketItemView({

itemId: idToMarketItem[currentId].itemId,

nftContract: idToMarketItem[currentId].nftContract,

tokenId: idToMarketItem[currentId].tokenId,

seller: idToMarketItem[currentId].seller,

price: idToMarketItem[currentId].price,

amount: idToMarketItem[currentId].amount,

isSoldOut: idToMarketItem[currentId].isSold,

isUnlisted: idToMarketItem[currentId].isUnlisted

});

marketItems[currentIndex] = currentItem;

currentIndex += 1;

}

}

return marketItems;

}

Listing 11.1 One of the affected functions, getMarketItems

Recommendations

We recommend re-designing/implementing all the affected functions. In addition, we recommend performing
unit testing on the functions against all possible edge cases to make sure that the functions return the correct
data.

Reassessment

The PlayToEarn team fixed bugs #1 (Overabundant array allocation) and #3 (Empty return

elements), but bug #2 (Incorrect paging calculation) is still effective on the getMarketItems,
fetchPurchasedNFTs, and fetchCreateNFTs functions.

The team acknowledged bug #2 and guaranteed not to change the limit function parameter when querying
data from the front-end.

PUBLIC 42

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 12 No Input Sanitization Checks

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 27 - 30, 103 - 106, and 112 - 115

Detailed Issue

It is the recommended practice to validate all input parameters before processing them. As shown in the
code snippet below, we found the following functions changing state variables without validating input
parameters.

1. constructor (L27 - 30)

2. setFee function (L103 - 106)

3. setCurrency function (L112 - 115)

NFTMarketplace.sol

27

28

29

30

103

104

105

106

112

113

114

115

constructor(IERC20 currency, uint256 listingFee) {

_currency = currency;

_fee = listingFee;

}

(...SNIP...)

function setFee(uint256 fee) public onlyOwner {

_fee = fee;

emit SetFee(fee);

}

(...SNIP...)

function setCurrency(address currency) public onlyOwner {

_currency = IERC20(currency);

emit SetCurrency(currency);

}

Listing 12.1 Functions that change state variables without validating input parameters

PUBLIC 43

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend updating the associated functions to validate all input parameters before processing them.

For example, if the zero address (0) is inputted in the setCurrency function, the zero address may lead to
unexpected behaviors such as denial of service. Therefore, we recommend validating the zero address in
the setCurrency function like the below code snippet.

NFTMarketplace.sol

112

113

114

115

116

function setCurrency(address currency) public onlyOwner {

require(currency != address(0), "Currency must not be the zero address");

_currency = IERC20(currency);

emit SetCurrency(currency);

}

Listing 12.2 Example of the improved setCurrency function with zero address validation check

Reassessment

The PlayToEarn team fixed this issue by validating all input parameters of the associated functions.

PUBLIC 44

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 13 The Compiler Is Not Locked To A Specific Version

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 2

Detailed Issue

The NFTMarketplace smart contract should be deployed with the compiler version used in the development
and testing process.

The compiler version that is not strictly locked via the pragma statement may make the contract incompatible
against unforeseen circumstances.

The code that is not locked to a specific version (e.g., using >= or ^ directive) is shown below.

NFTMarketplace.sol

1

2

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.4;

Listing 13.1 The code that is not locked to a specific version

Recommendations

We recommend locking the pragma version like the example code snippet below.

pragma solidity 0.8.0;

// or

pragma solidity =0.8.0;

contract SemVerFloatingPragmaFixed {

}

Reference: https://swcregistry.io/docs/SWC-103

Reassessment

The PlayToEarn team fixed this issue by locking the pragma version to v0.8.10.

PUBLIC 45

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 14 The Compiler May Be Susceptible To The Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 2

Detailed Issue

The NFTMarketplace smart contract uses an outdated Solidity compiler version which may be susceptible to
publicly disclosed vulnerabilities. The compiler version currently used is 0.8.4, which contains the list of
known bugs as the following links:

https://docs.soliditylang.org/en/v0.8.10/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some
attacks further.

The smart contract that does not use the latest patch version is shown below.

NFTMarketplace.sol

1

2

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.4;

Listing 14.1 The smart contract that does not use the latest patch version (v0.8.10)

Recommendations

We recommend using the latest patch version, v0.8.10, that fixes all known bugs.

Reassessment

The PlayToEarn team fixed this issue by applying the latest Solidity patch version, v0.8.10.

PUBLIC 46

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 15 Recommended Gas Optimization

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations
NFTMarketplace.sol L: 103 - 106, 112 - 115, 117 - 159, 161 - 214, 216 - 250, and

252 - 277

Detailed Issue

The following functions can be optimized for saving gas usage by changing their access visibility from
public to external.

1. setFee function (L103 - 160)

2. setCurrency function (L112 - 115)

3. createMarketItem function (L117 - 159)

4. buyMarketItem function (L161 - 214)

5. unlistMarketItem function (L216 - 250)

6. setMarketItemPrice function (L252 - 277)

The code snippet below shows one of the public functions that can be optimized for saving gas.

NFTMarketplace.sol

117

118

119

120

121

122

159

function createMarketItem(

address nftContract,

uint256 tokenId,

uint256 price,

uint256 amount

) public nonReentrant {

(...SNIP...)

}

Listing 15.1 One of the public functions that can be optimized for saving gas

PUBLIC 47

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend changing the access visibility of the associated functions as external for gas-saving like
the following code snippet.

NFTMarketplace.sol

117

118

119

120

121

122

159

function createMarketItem(

address nftContract,

uint256 tokenId,

uint256 price,

uint256 amount

) external nonReentrant {

(...SNIP...)

}

Listing 15.2 The optimized function for saving gas

Reassessment

The PlayToEarn team fixed this issue by changing the access visibility of the associated functions as
external for gas-saving.

PUBLIC 48

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 16 Misleading Struct Field

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 40

Detailed Issue

We found that the MarketItem struct has the misleading field isSold (L40 in the code snippet below). The
isSold variable is used to track whether NFT assets under a specific itemId are sold out. In other words,
the isSold variable will be marked as true when all NFT assets (under a particular itemId) are sold out.

NFTMarketplace.sol

32

33

34

35

36

37

38

39

40

41

42

struct MarketItem {

uint256 itemId;

address nftContract;

uint256 tokenId;

address seller;

address owner;

uint256 price;

uint256 amount;

bool isSold;

bool isUnlisted;

}

Listing 16.1 The MarketItem struct with the misleading field isSold

PUBLIC 49

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend renaming the associated struct field for clarity, as shown in the code snippet below (L40).

NFTMarketplace.sol

32

33

34

35

36

37

38

39

40

41

42

struct MarketItem {

uint256 itemId;

address nftContract;

uint256 tokenId;

address seller;

address owner;

uint256 price;

uint256 amount;

bool isSoldOut;

bool isUnlisted;

}

Listing 16.2 The improved MarketItem struct

Reassessment

The PlayToEarn team fixed this issue according to our recommendation.

PUBLIC 50

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 17 Misleading State Variable

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 19

Detailed Issue

The state variable _itemsSold is misleading (L19 in the code snippet below). The _itemsSold variable is
used to track the number of NFT items already sold out (each NFT item can have multiple assets under).

However, the NFTMarketplace contract supports buying a partial number of assets (under a specific
itemId). Therefore, not every purchase transaction will buy all NFT assets.

NFTMarketplace.sol

13

14

15

16

17

18

19

20

contract NFTMarketplace is ReentrancyGuard, Ownable, ERC1155Holder {

using Counters for Counters.Counter;

using SafeERC20 for IERC20;

using SafeMath for uint256;

Counters.Counter private _itemIds; // Id for each individual item

Counters.Counter private _itemsSold; // Number of items sold

Counters.Counter private _itemsUnlist; // Number of items delisted

Listing 17.1 The _itemsSold state variable is misleading

PUBLIC 51

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend renaming the associated state variable for clarity, as shown in the code snippet below (L19).

NFTMarketplace.sol

13

14

15

16

17

18

19

20

contract NFTMarketplace is ReentrancyGuard, Ownable, ERC1155Holder {

using Counters for Counters.Counter;

using SafeERC20 for IERC20;

using SafeMath for uint256;

Counters.Counter private _itemIds; // Id for each individual item

Counters.Counter private _itemsSoldOut; // Number of items sold out

Counters.Counter private _itemsUnlist; // Number of items delisted

Listing 17.2 The improved state variable

Reassessment

The PlayToEarn team fixed this issue by renaming the associated state variable as follows.

NFTMarketplace.sol

15

16

17

18

19

20

21

22

23

24

25

26

contract NFTMarketplace is

Initializable,

Ownable,

ReentrancyGuard,

ERC1155Holder

{

using Counters for Counters.Counter;

using SafeERC20 for IERC20;

using SafeMath for uint256;

Counters.Counter private itemIds; // ID for each individual item

Counters.Counter private itemsSelling; // ID for each individual item

Listing 17.3 The renamed state variable

PUBLIC 52

PlayToEarn - NFTMarketplace - Smart Contract Audit

No. 18 Inconsistent Comment With The Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/NFTMarketplace.sol

Locations NFTMarketplace.sol L: 22

Detailed Issue

In L22 of the code snippet below, the state variable _fee is used for calculating the commission for the
platform owner that is inconsistent with the comment that tells that the commission would be for NFT owners
or sellers.

NFTMarketplace.sol

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

contract NFTMarketplace is ReentrancyGuard, Ownable, ERC1155Holder {

using Counters for Counters.Counter;

using SafeERC20 for IERC20;

using SafeMath for uint256;

Counters.Counter private _itemIds; // Id for each individual item

Counters.Counter private _itemsSold; // Number of items sold

Counters.Counter private _itemsUnlist; // Number of items delisted

uint256 private _fee; // This is made for owner of the file to be

comissioned (percent)

IERC20 private _currency;

uint256 private constant FEE_DENOMINATOR = 10**10;

constructor(IERC20 currency, uint256 listingFee) {

_currency = currency;

_fee = listingFee;

}

Listing 18.1 The inconsistent comment with the source code

PUBLIC 53

PlayToEarn - NFTMarketplace - Smart Contract Audit

Recommendations

We recommend updating the associated comment to reflect the source code’s transparency.

Reassessment

The PlayToEarn team fixed this issue by updating the associated comment below.

NFTMarketplace.sol

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

contract NFTMarketplace is

Initializable,

Ownable,

ReentrancyGuard,

ERC1155Holder

{

using Counters for Counters.Counter;

using SafeERC20 for IERC20;

using SafeMath for uint256;

Counters.Counter private itemIds; // ID for each individual item

Counters.Counter private itemsSelling; // ID for each individual item

IERC20 private currency;

uint256 private fee; // The percentage that game creator will get from each

sale

Listing 18.2 The improved comment

PUBLIC 54

PlayToEarn - NFTMarketplace - Smart Contract Audit

Appendix

About Us
Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of
cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract
security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in areas of private and
public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes
recommendations on smart contracts' security and gas optimization to bring the most benefit to users and
platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 55

PlayToEarn - NFTMarketplace - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 56

