
FWX
FWX Lending and
Borrowing Pools, and
FWX Membership
Smart Contract Audit Report

Date Issued: 31 Aug 2022

Version: Final v1.0

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About FWX Lending and Borrowing Pools, and FWX Membership 3
Scope of Work 4
Auditors 9
Disclaimer 9
Audit Result Summary 10

Methodology 11
Audit Items 12
Risk Rating 14

Findings 15
Review Findings Summary 15
Detailed Result 17

Appendix 138
About Us 138
Contact Information 138
References 139

PUBLIC 2

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the FWX Lending and
Borrowing Pools, and FWX Membership features. This audit report was published on 31 Aug 2022. The

audit scope is limited to the FWX Lending and Borrowing Pools, and FWX Membership features. Our

security best practices strongly recommend that the FWX team conduct a full security audit for both on-chain

and off-chain components of its infrastructure and their interaction. A comprehensive examination has been

performed during the audit process utilizing Valix’s Formal Verification, Static Analysis, and Manual Review

techniques.

About FWX Lending and Borrowing Pools, and FWX
Membership

FWX Key Features
FWX offers three main features which are the decentralized derivative exchange (DDEX), the lending and

borrowing pools (LBPs), and NFT membership. The three features support each other. FWX DDEX needs

the liquidity pools to operate, while the LBPs receive real borrowing demand and thus real profits from the

derivative trading orders. However, in this phase, we have audited only LBPs and a part of NFT membership.

FWX Lending and Borrowing Pools Feature
FWX offers lending and borrowing features. The lending yield is from the interest paid by borrowers and

protocol may paid interest as FWX with a static amount per block. The borrowing annual percentage rates

(APRs) is determined by the borrowing demand and lending supply, borrowing interest will be proportional

divided to lenders. To borrow token from liquidity pool, other token is required as collateral. The maximum

borrowing amount depends on the amount of collateral provided and Max LTV set.

FWX Membership Feature
Membership takes the form of an NFT, which is necessary for participation on the platform. This membership

NFT acts like a bankbook, storing a record of all interactions with the protocol, such as lending tokens and

initiating loans. Moreover, owners can enhance their membership NFT tier by staking FWX tokens on the

platform, earning further privileges in relation to their tier. The staked tokens will be progressively unlocked

for unstaking at a rate of 25% every 7 days.

PUBLIC 3

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Scope of Work

The security audit conducted does not replace the full security audit of the overall FWX protocol. The scope

is limited to the FWX Lending and Borrowing Pools, and FWX Membership features and their related

smart contracts.

The security audit covered the components at this specific state:

Item Description

Components

▪ FWX Lending and Borrowing Pools smart contracts

▪ FWX Membership smart contracts

▪ Imported associated smart contracts and libraries

Git Repository ▪ https://github.com/Forward-Development/Forward-Defi-Protocol

Audit Commit ▪ 2cb4217175078e887db74171f3174ad2393d5dae (branch: audit)

Reassessment Commit
▪ 0b848488327ddf4ae436dd485bc8570178f1d090

(branch: audit-1/freeze-4)

Audited Files

▪ ./contracts/src/core/APHCore.sol

▪ ./contracts/src/core/APHCoreProxy.sol

▪ ./contracts/src/core/CoreBase.sol

▪ ./contracts/src/core/CoreBaseFunc.sol

▪ ./contracts/src/core/CoreBorrowing.sol

▪ ./contracts/src/core/CoreFutureTrading.sol

▪ ./contracts/src/core/CoreSetting.sol

▪ ./contracts/src/core/event/CoreBorrowingEvent.sol

▪ ./contracts/src/core/event/CoreEvent.sol

▪ ./contracts/src/core/event/CoreFutureTradingEvent.sol

▪ ./contracts/src/core/event/CoreSettingEvent.sol

▪ ./contracts/src/governance/Timelock.sol

▪ ./contracts/src/nft/Membership.sol

▪ ./contracts/src/pool/APHPool.sol

▪ ./contracts/src/pool/APHPoolProxy.sol

▪ ./contracts/src/pool/InterestVault.sol

▪ ./contracts/src/pool/PoolBase.sol

▪ ./contracts/src/pool/PoolBaseFunc.sol

▪ ./contracts/src/pool/PoolBorrowing.sol

▪ ./contracts/src/pool/PoolLending.sol

PUBLIC 4

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

▪ ./contracts/src/pool/PoolSetting.sol

▪ ./contracts/src/pool/PoolToken.sol

▪ ./contracts/src/pool/event/InterestVaultEvent.sol

▪ ./contracts/src/pool/event/PoolLendingEvent.sol

▪ ./contracts/src/pool/event/PoolSettingEvent.sol

▪ ./contracts/src/stakepool/StakePool.sol

▪ ./contracts/src/stakepool/StakePoolBase.sol

▪ ./contracts/src/utils/PriceFeed.sol

▪ ./contracts/src/utils/ProxyAdmin.sol

▪ ./contracts/src/utils/TransperantProxy.sol

▪ ./contracts/src/utils/Vault.sol

▪ ./contracts/src/utils/WETHHandler.sol

▪ ./contracts/externalContract/modify/non-upgradeable/AssetHandler.sol

▪ ./contracts/externalContract/modify/non-upgradeable/Manager.sol

▪ ./contracts/externalContract/modify/non-upgradeable/

ManagerTimelock.sol

▪ ./contracts/externalContract/modify/non-upgradeable/

SelectorPausable.sol

▪ ./contracts/externalContract/modify/upgradeable/

AssetHandlerUpgradeable.sol

▪ ./contracts/externalContract/modify/upgradeable/

ManagerTimelockUpgradeable.sol

▪ ./contracts/externalContract/modify/upgradeable/

ManagerUpgradeable.sol

▪ ./contracts/externalContract/modify/upgradeable/

SelectorPausableUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

AccessControl.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Address.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

AggregatorV2V3Interface.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Context.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Counters.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ERC165.sol

PUBLIC 5

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ERC20.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ERC721.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ERC721Enumerable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ERC721Pausable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IAccessControl.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC165.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC20.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC20Metadata.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC721.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC721Enumerable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC721Metadata.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

IERC721Receiver.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/IWETH.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Initializable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/Math.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Ownable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

Pausable.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

ReentrancyGuard.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

SafeERC20.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/Strings.sol

▪ ./contracts/externalContract/openzeppelin/non-upgradeable/

TimelockController.sol

PUBLIC 6

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

▪ ./contracts/externalContract/openzeppelin/upgradeable/

AddressUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

ContextUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

IERC20Upgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

InitializableUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

MathUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

OwnableUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

ReentrancyGuardUpgradeable.sol

▪ ./contracts/externalContract/openzeppelin/upgradeable/

SafeERC20Upgradeable.sol

▪ ./contracts/interfaces/IAPHCore.sol

▪ ./contracts/interfaces/IAPHCoreSetting.sol

▪ ./contracts/interfaces/IAPHPool.sol

▪ ./contracts/interfaces/IAPHPoolSetting.sol

▪ ./contracts/interfaces/IInterestVault.sol

▪ ./contracts/interfaces/IMembership.sol

▪ ./contracts/interfaces/IPriceFeed.sol

▪ ./contracts/interfaces/IRouter.sol

▪ ./contracts/interfaces/IStakePool.sol

▪ ./contracts/interfaces/IWeth.sol

▪ ./contracts/interfaces/IWethERC20.sol

▪ ./contracts/interfaces/IWethERC20Upgradeable.sol

▪ ./contracts/interfaces/IWethHandler.sol

▪ Other imported associated Solidity files

Excluded Files/Contracts

▪ ./contracts/mock/*.sol

▪ ./contracts/src/helper/Helper.sol

▪ ./contracts/src/helper/HelperBase.sol

▪ ./contracts/src/utils/Faucet.sol

▪ ./contracts/interfaces/IFaucet.sol

▪ ./contracts/interfaces/IHelper.sol

Remark: Our security best practices strongly recommend that the FWX team conduct a full security audit for

both on-chain and off-chain components of its infrastructure and the interaction between them.

PUBLIC 7

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Auditors

Role Staff List

Auditors Phuwanai Thummavet

Authors Phuwanai Thummavet

Reviewers Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a

single point in time. As such, the scope was limited to current known risks during the work period. The review

does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred

percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided

code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or

“endorsement” of any particular project. This audit report should also not be used as investment advice nor

provide any legal compliance.

PUBLIC 8

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the FWX
Lending and Borrowing Pools, and FWX Membership features have sufficient security protections to be

safe for use.

31 Aug 2022

Initially, Valix was able to identify 40 issues that were categorized from the “Critical” to “Informational” risk

level in the given timeframe of the assessment.

For the reassessment, the FWX team fixed 38 issues. There were 2 issues including 1 High-risk and 1
Low-risk marked as acknowledged but the team has prepared their mitigation plans already.

Below is the breakdown of the vulnerabilities found and their associated risk rating for each assessment

conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

FWX Lending and
Borrowing Pools, and
FWX Membership

4 12 16 8 - 0 1 0 1 -

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 9

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test

Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual

and automated review approaches can be mixed and matched, including business logic analysis in terms of

the malicious doer's perspective. Using automated scanning tools to navigate or find offending software

patterns in the codebase along with a purely manual or semi-automated approach, where the analyst

primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding of the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 10

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 11

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 12

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,

Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are

presented in the table.

Risk Level Definition

Critical
The code implementation does not match the specification, and it could disrupt the

platform.

High
The code implementation does not match the specification, or it could result in losing

funds for contract owners or users.

Medium
The code implementation does not match the specification under certain conditions, or it

could affect the security standard by losing access control.

Low
The code implementation does not follow best practices or use suboptimal design

patterns, which may lead to security vulnerabilities further down the line.

Informational
Findings in this category are informational and may be further improved by following best

practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as

illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.

● Impact measures the technical loss and business damage of a successful attack.

● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels

"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the

risk to an acceptable level.

PUBLIC 13

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Uninitialized Implementation Contracts Critical Fixed In use

2 Potential Theft Of Ethers From WETH Pool Critical Fixed In use

3 Unusable Liquidate Function Critical Fixed In use

4 Lack Of Repayment On Liquidated Loan Critical Fixed In use

5 Phishing Attack To Steal Forward Tokens High Fixed In use

6 Insecure Membership Authentication High Fixed In use

7 Implementation Contracts May Not Be Upgradeable High Fixed In use

8 Uninitialized Base Contracts High Fixed In use

9 Transaction Revert On Loan Repayment High Fixed In use

10 Malfunction Of Rollover Function High Fixed In use

11 Potential Loss Of Pool’s Asset High Acknowledged In use

12 Loss Of Collateral Asset During Price Feeding
System’s Pause High Fixed In use

13 Setting New Router May Halt Pool Token Swap High Fixed In use

14 Contract Upgradeable Without Time Delay High Fixed In use

15 Inaccurate Calculation For Liquidation Point High Fixed In use

16 Flash Loan-Based Price Manipulation Attack On
Liquidated Loan High Fixed In use

17 Removal Recommendation For Mock Function Medium Fixed In use

18 Reentrancy Attack to Steal All Forward Tokens
From Distributor Medium Fixed In use

19 No Allowlist For Collateral Tokens Medium Fixed In use

20 Misplaced Transfer Approval For Forward
Distributor Medium Fixed In use

PUBLIC 14

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

21 Incorrect Calculation For Bounty Reward Medium Fixed In use

22 Lack Of Sanitization Checks On Loan Config
Parameters Medium Fixed In use

23 Underflow On Getting More Loan Medium Fixed In use

24 Incorrect Calculations For Loan Repayment Medium Fixed In use

25 Unchecking Price Feeding System’s Pause Medium Fixed In use

26 Inaccurate Interest Calculation For Liquidated Loan Medium Fixed In use

27 Potential Loss Of Collateral Asset For Loan
Borrower Medium Fixed In use

28 Potential Lock Of Ethers Medium Fixed In use

29 Incorrectly Updating Membership NFT Rank Medium Fixed In use

30 Possibly Incorrect Calculation For Lending Forward
Interest Medium Fixed In use

31 Lack Of Stale Price Detection Mechanism Medium Fixed In use

32 Usage Of Unsafe Functions Medium Fixed In use

33 Liquidator May Receive Zero Bounty Reward Low Acknowledged In use

34 Inaccurate Calculation For Current LTV Low Fixed In use

35 Improperly Getting Membership NFT Rank Low Fixed In use

36 Spamming On Minting Membership NFTs Low Fixed In use

37 Rejection On Getting Active Loans Low Fixed In use

38 Rejection On Getting Pool List Low Fixed In use

39 Compiler May Be Susceptible To Publicly Disclosed
Bugs Low Fixed In use

40 Recommended Event Emissions For Transparency Low Fixed In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 15

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Uninitialized Implementation Contracts

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/pool/APHPool.sol

./contracts/src/pool/PoolSetting.sol

./contracts/src/pool/APHPoolProxy.sol

./contracts/src/core/APHCore.sol

./contracts/src/core/CoreSetting.sol

./contracts/src/core/APHCoreProxy.sol

Locations

APHPool.sol L: 12 - 39

PoolSetting.sol L: 66 - 71 and 73 - 78

APHPoolProxy.sol L: 8 - 19, 21 - 40, 42 - 56, 58 - 69, 71 - 85, 87 - 101, and 103 - 127

APHCore.sol L: 11 - 33

CoreSetting.sol L: 38 - 43

APHCoreProxy.sol L: 9 - 39, 41 - 63, 65 - 87, 89 - 103, and 105 - 127

Detailed Issue

The APHPool and APHCore are designed to be implementation contracts supporting an upgradeable

feature. That is, these implementation contracts will be the logic contracts for their proxy contracts.

We found that both the APHPool and APHCore implementation contracts would be left uninitialized when

they are deployed resulting in being taken over by an attacker. As a result, the attacker can perform a

denial-of-service attack rendering the proxy contracts unusable.

To understand this issue, consider the following attack scenario of the APHPool implementation contract.

1. The APHPool implementation and proxy contracts are deployed and set up by a developer.

2. An attacker discovers the APHPool implementation contract uninitialized. He takes over the

implementation contract by calling the initialize function (code snippet 1.1). As a result, the manager

state variable is set to the attacker address (L23).

PUBLIC 16

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

3. The attacker deploys a Rogue contract implementing a (mock) activateRank function.

4. The attacker makes a call to the APHPool’s setPoolLendingAddress function to set the

poolLendingAddress state variable to the previously deployed Rogue contract address (L68 in code

snippet 1.2).

5. The attacker executes the APHPool’s activateRank function which would make a delegatecall to the

(mock) activateRank function of the Rogue contract pointed by the poolLendingAddress (L9 in code

snippet 1.3).

6. The (mock) activateRank function invokes the selfdestruct instruction resulting in removing the

contract code from the APHPool implementation contract address.

7. The APHPool proxy contract becomes unusable since its implementation contract was destroyed.

We consider this issue critical since suddenly after the APHPool and APHCore implementation contracts are

destroyed, their proxy contracts would no longer operate, leaving all protocol’s assets and users’ assets

frozen.

APHPool.sol

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

function initialize(

address _tokenAddress,

address _coreAddress,

address _membershipAddress

) external virtual initializer {

require(_tokenAddress != address(0),

"APHPool/initialize/tokenAddress-zero-address");

require(_coreAddress != address(0),

"APHPool/initialize/coreAddress-zero-address");

require(_membershipAddress != address(0),

"APHPool/initialize/membership-zero-address");

tokenAddress = _tokenAddress;

coreAddress = _coreAddress;

membershipAddress = _membershipAddress;

manager = msg.sender;

forwAddress = 0xAf0244ddcD9EaDA973b28b86BF2F18BCeea1D78f;

interestVaultAddress = address(

new InterestVault(tokenAddress, forwAddress, coreAddress, manager)

);

WEI_UNIT = 10**18;

WEI_PERCENT_UNIT = 10**20;

BLOCK_TIME = 3;

initialItpPrice = WEI_UNIT;

initialIfpPrice = WEI_UNIT;

lambda = 1 ether / 100;

emit Initialize(manager, coreAddress, interestVaultAddress,

membershipAddress);

PUBLIC 17

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

38

39

emit TransferManager(address(0), manager);

}

Listing 1.1 The APHPool implementation contract’s initialize function
allows an attacker to become a contract manager

PoolSetting.sol

66

67

68

69

70

71

function setPoolLendingAddress(address _address) external onlyManager {

address oldAddress = poolLendingAddress;

poolLendingAddress = _address;

emit SetPoolLendingAddress(msg.sender, oldAddress, _address);

}

Listing 1.2 The setPoolLendingAddress function allows an attacker to set the poolLendingAddress

APHPoolProxy.sol

8

9

10

11

12

13

14

15

16

17

18

19

function activateRank(uint256 nftId) external returns (uint8 newRank) {

(bool success, bytes memory data) = poolLendingAddress.delegatecall(

abi.encodeWithSignature("activateRank(uint256)", nftId)

);

if (!success) {

if (data.length == 0) revert();

assembly {

revert(add(32, data), mload(data))

}

}

newRank = abi.decode(data, (uint8));

}

Listing 1.3 The activateRank, one of the functions that can make a delegatecall
to a Rogue contract pointed by the poolLendingAddress

PUBLIC 18

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

To address this issue, we recommend adding the constructor like the code snippet below to both the

APHPool and APHCore implementation contracts.

The added constructor guarantees that the implementation contract would be automatically initialized during

its deployment, closing the room for an attacker to take over the implementation contract anymore.

APHPool.sol

11

12

13

14

15

16

17

18

41

127

contract APHPool is PoolBaseFunc, APHPoolProxy, PoolSetting {

constructor() initializer {}

function initialize(

address _tokenAddress,

address _coreAddress,

address _membershipAddress

) external virtual initializer {

// (...SNIPPED...)

}

// (...SNIPPED...)

}

Listing 1.4 The improved APHPool implementation contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 19

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 2 Potential Theft Of Ethers From WETH Pool

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/pool/PoolSetting.sol

Locations PoolSetting.sol L: 80 - 82

Detailed Issue

We found a broken authorization issue on the setWETHHandler function (code snippet 2.1) in the

PoolSetting contract that allows anyone to configure the wethHandler with any arbitrary address.

We also found that the _transferFromOut and _transferOut functions (L34 - 49 and L51 - 65 in code snippet

2.2) in the AssetHandler contract employ the WETHHandler contract indicated by the associated

wethHandler to unwrap WETH tokens to Ethers (native coin) and then transfer the unwrapped Ethers to a

destination address.

Both the _transferFromOut and _transferOut functions are being utilized by several functions. The following

lists only the functions affected by the issue.

1. withdraw function (L69 - 98 in PoolLending.sol)

2. claimAllInterest function (L103 - 132 in PoolLending.sol)

3. claimTokenInterest function (L138 - 154 in PoolLending.sol)

4. repay function (L46 - 87 in CoreBorrowing.sol)

5. adjustCollateral function (L94 - 117 in CoreBorrowing.sol)

6. liquidate function (L146 - 162 in CoreBorrowing.sol)

7. borrow function (L16 - 37 in PoolBorrowing.sol)

The code snippet 2.3 shows the borrow function, one of the functions that transfer Ethers out of the WETH

Pool. With the broken authorization issue on the setWETHHandler function, an attacker can easily mock the

WETHHandler contract to steal all Ethers transferred out from the WETH Pool by configuring the

wethHandler to point to the mock contract.

PUBLIC 20

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolSetting.sol

80

81

82

function setWETHHandler(address _address) external {

wethHandler = _address;

}

Listing 2.1 The setWETHHandler function for configuring the wethHandler

AssetHandler.sol

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

function _transferFromOut(

address from,

address to,

address token,

uint256 amount

) internal {

if (amount == 0) {

return;

}

if (token == wethAddress) {

IWethERC20(wethAddress).transferFrom(from, wethHandler, amount);

WETHHandler(payable(wethHandler)).withdrawETH(to, amount);

} else {

IERC20(token).transferFrom(from, to, amount);

}

}

function _transferOut(

address to,

address token,

uint256 amount

) internal {

if (amount == 0) {

return;

}

if (token == wethAddress) {

IWethERC20(wethAddress).transfer(wethHandler, amount);

WETHHandler(payable(wethHandler)).withdrawETH(to, amount);

} else {

IERC20(token).transfer(to, amount);

}

}

Listing 2.2 The _transferFromOut and _transferOut functions that hire the wethHandler
to transfer Ethers to a destination (to) address

PUBLIC 21

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolBorrowing.sol

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

function borrow(

uint256 loanId,

uint256 nftId,

uint256 borrowAmount,

uint256 collateralSentAmount,

address collateralTokenAddress

) external payable nonReentrant whenFuncNotPaused(msg.sig) returns

(CoreBase.Loan memory) {

nftId = _getUsableToken(nftId);

if (collateralSentAmount != 0) {

_transferFromIn(tx.origin, coreAddress, collateralTokenAddress,

collateralSentAmount);

}

CoreBase.Loan memory loan = _borrow(

loanId,

nftId,

borrowAmount,

collateralSentAmount,

collateralTokenAddress

);

_transferOut(tx.origin, tokenAddress, borrowAmount);

return loan;

}

Listing 2.3 The borrow function is one of the functions that transfer Ethers out of the WETH Pool

Recommendations

To address this issue, we recommend applying the onlyManager modifier to the setWETHHandler function

as shown in the code snippet below. This allows only a platform manager to configure the wethHandler.

PoolSetting.sol

80

81

82

function setWETHHandler(address _address) external onlyManager {

wethHandler = _address;

}

Listing 2.4 The resolved setWETHHandler function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 22

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

The FWX team fixed this issue as per our suggestion.

PUBLIC 23

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 3 Unusable Liquidate Function

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 146 - 162

Detailed Issue

We found the liquidate function sending a wrong token for a bounty reward as shown in L160 in the code

snippet below. This always makes the liquidate function revert a transaction. Consequently, the protocol

cannot liquidate loans that reach the liquidation point.

CoreBorrowing.sol

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

function liquidate(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

Loan storage loan = loans[nftId][loanId];

(repayBorrow, repayInterest, bountyReward, leftOverCollateral) =

_liquidate(loanId, nftId);

_transferOut(msg.sender, loan.borrowTokenAddress, bountyReward);

_transferOut(_getTokenOwnership(nftId), loan.collateralTokenAddress,

leftOverCollateral);

}

Listing 3.1 The liquidate function sending a wrong token

PUBLIC 24

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend changing the associated token to loan.collateralTokenAddress instead like L160 in the

code snippet below.

CoreBorrowing.sol

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

function liquidate(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

Loan storage loan = loans[nftId][loanId];

(repayBorrow, repayInterest, bountyReward, leftOverCollateral) =

_liquidate(loanId, nftId);

_transferOut(msg.sender, loan.collateralTokenAddress, bountyReward);

_transferOut(_getTokenOwnership(nftId), loan.collateralTokenAddress,

leftOverCollateral);

}

Listing 3.2 The improved liquidate function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 25

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 4 Lack Of Repayment On Liquidated Loan

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 146 - 162

Detailed Issue

We found that the liquidate function does not repay the borrowed asset and borrowing interest back to its

pool (as shown in the code snippet below). This makes the borrowed asset and the borrowing interest locked

in the APHCore contract, resulting in the loss of the pool’s assets.

CoreBorrowing.sol

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

function liquidate(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

Loan storage loan = loans[nftId][loanId];

(repayBorrow, repayInterest, bountyReward, leftOverCollateral) =

_liquidate(loanId, nftId);

_transferOut(msg.sender, loan.borrowTokenAddress, bountyReward);

_transferOut(_getTokenOwnership(nftId), loan.collateralTokenAddress,

leftOverCollateral);

}

Listing 4.1 The liquidate function that does not repay the borrowed asset
and borrowing interest back to its pool

PUBLIC 26

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the liquidate function to repay the borrowed asset (L160 - 163) and the borrowing

interest (L164 - 167) back to the corresponding pool as shown in the code snippet below.

CoreBorrowing.sol

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

function liquidate(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

Loan storage loan = loans[nftId][loanId];

(repayBorrow, repayInterest, bountyReward, leftOverCollateral) =

_liquidate(loanId, nftId);

IERC20(loan.borrowTokenAddress).safeTransfer(

assetToPool[loan.borrowTokenAddress],

repayBorrow

);

IERC20(loan.borrowTokenAddress).safeTransfer(

IAPHPool(assetToPool[loan.borrowTokenAddress]).interestVaultAddress(),

repayInterest

);

_transferOut(msg.sender, loan.borrowTokenAddress, bountyReward);

_transferOut(_getTokenOwnership(nftId), loan.collateralTokenAddress,

leftOverCollateral);

}

Listing 4.2 The improved liquidate function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our suggestion.

PUBLIC 27

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 5 Phishing Attack To Steal Forward Tokens

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/stakepool/StakePool.sol

./contracts/src/nft/Membership.sol

Locations
StakePool.sol L: 140 - 148 and 207 - 222

Membership.sol L: 128 - 130 and 154 - 162

Detailed Issue

We found potential phishing attacks on the unstake function of the StakePool contract (code snippet 5.1),

leading to the stealing of the staker’s claimable Forward tokens.

Specifically, the unstake function firstly calls the usableTokenId function of the Membership contract (L146) to

authenticate and prove ownership of the specified nftId and then receive the legitimate (proved) nftId. After

that, the unstake function invokes the _unstake function to perform the unstaking process (L147).

Code snippet 5.2 presents the usableTokenId function which calls another internal function _usableTokenId

(L129). The root cause of this issue resides in the _usableTokenId function (L154 - 162) in which the function

authenticates ownership of the given nftId with tx.origin (L156 and L159).

With the tx.origin, an attacker can make a phishing campaign to act as a Forward staker to execute the

_unstake function in L207 - 222 in code snippet 5.3. In L219, all claimable Forward tokens owned by the

phished staker (victim) would be transferred to the attacker.

StakePool.sol

140

141

142

143

144

145

146

147

148

function unstake(uint256 nftId, uint256 amount)

external

nonReentrant

whenFuncNotPaused(msg.sig)

returns (StakeInfo memory)

{

nftId = IMembership(membershipAddress).usableTokenId(nftId);

return _unstake(nftId, amount);

}

Listing 5.1 The unstake function of the StakePool contract

PUBLIC 28

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Membership.sol

128

129

130

154

155

156

157

158

159

160

161

162

function usableTokenId(uint256 tokenId) external view returns (uint256) {

return _usableTokenId(tokenId);

}

// (...SNIPPED...)

function _usableTokenId(uint256 tokenId) internal view returns (uint256) {

if (tokenId == 0) {

tokenId = _defaultMembership[tx.origin];

require(tokenId != 0, "Membership/do-not-owned-any-membership-card");

} else {

require(ownerOf(tokenId) == tx.origin,

"Membership/caller-is-not-card-owner");

}

return tokenId;

}

Listing 5.2 The usableTokenId and _usableTokenId functions
for authenticating and proving ownership of the specified nftId

StakePool.sol

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

function _unstake(uint256 nftId, uint256 amount) internal returns (StakeInfo

memory) {

StakeInfo storage nftStakeInfo = stakeInfos[nftId];

_settle(nftStakeInfo);

require(nftStakeInfo.stakeBalance >= amount,

"StakePool/unstake-balance-is-insufficient");

if (nftStakeInfo.claimableAmount < amount) {

amount = nftStakeInfo.claimableAmount;

}

nftStakeInfo.stakeBalance -= amount;

nftStakeInfo.claimableAmount -= amount;

_updateNFTRank(nftId);

_transferFromOut(stakeVaultAddress, msg.sender, forwAddress, amount);

emit UnStake(msg.sender, nftId, amount);

return nftStakeInfo;

}

Listing 5.3 The _unstake function transfers claimable Forward tokens
to a caller who is an attacker in an event of phishing attack

PUBLIC 29

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend improving the _usableTokenId function like the code snippet below. The improved function

guarantees that only the EOA (Externally Owned Account) users would be able to authenticate and prove

ownership of the Membership NFTs (L155) as well as preventing the phishing attacks previously discussed

(L157 and L160).

Membership.sol

154

155

156

157

158

159

160

161

162

163

function _usableTokenId(uint256 tokenId) internal view returns (uint256) {

require(msg.sender == tx.origin,

"Membership/do-not-support-smart-contract");

if (tokenId == 0) {

tokenId = _defaultMembership[msg.sender];

require(tokenId != 0, "Membership/do-not-owned-any-membership-card");

} else {

require(ownerOf(tokenId) == msg.sender,

"Membership/caller-is-not-card-owner");

}

return tokenId;

}

Listing 5.4 The improved _usableTokenId function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed by improving the _usableTokenId function according to our recommendation.

PUBLIC 30

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 6 Insecure Membership Authentication

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/core/CoreBorrowing.sol

./contracts/src/pool/PoolBorrowing.sol

./contracts/src/pool/PoolLending.sol

./contracts/src/stakepool/StakePool.sol

./contracts/src/nft/Membership.sol

Locations

CoreBorrowing.sol L: 46 - 87, 97 - 117, and 127 - 135

PoolBorrowing.sol L: 16 - 37

PoolLending.sol L: 15 - 35, 43 - 59, 69 - 98, 103 - 132, 138 - 154, and 160 - 179

StakePool.sol L: 125 - 133 and 140 - 148

Membership.sol L: 154 - 162

Detailed Issue

We found an insecure authentication issue on the _usableTokenId function of the Membership contract (code

snippet 6.1). This function uses tx.origin to authenticate and prove ownership of the specified Membership

NFT tokenId (L156 and L159).

At this point, we found an insecure use of tx.origin in which an attacker can make a phishing campaign to act

as a user (victim) to invoke the Forward platform’s functions without the victim’s consent.

Membership.sol

154

155

156

157

158

159

160

161

162

function _usableTokenId(uint256 tokenId) internal view returns (uint256) {

if (tokenId == 0) {

tokenId = _defaultMembership[tx.origin];

require(tokenId != 0, "Membership/do-not-owned-any-membership-card");

} else {

require(ownerOf(tokenId) == tx.origin,

"Membership/caller-is-not-card-owner");

}

return tokenId;

}

Listing 6.1 The _usableTokenId function for authenticating and proving ownership of the specified tokenId

PUBLIC 31

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

The following lists all affected functions calling the insecure _usableTokenId function.

1. repay function (L46 - 87 in CoreBorrowing.sol)

2. adjustCollateral function (L97 - 117 in CoreBorrowing.sol)

3. rollover function (L127 - 135 in CoreBorrowing.sol)

4. borrow function (L16 - 37 in PoolBorrowing.sol)

5. activateRank function (L15 - 35 in PoolLending.sol)

6. deposit function (L43 - 59 in PoolLending.sol)

7. withdraw function (L69 - 98 in PoolLending.sol)

8. claimAllInterest function (L103 - 132 in PoolLending.sol)

9. claimTokenInterest function (L138 - 154 in PoolLending.sol)

10. claimForwInterest function (L160 - 179 in PoolLending.sol)

11. stake function (L125 - 133 in StakePool.sol)

12. unstake function (L140 - 148 in StakePool.sol) – we also found potential phishing attacks for

stealing Forward tokens (refer to issue no. 5 for details)

Code snippet 6.2 shows the adjustCollateral function (one of the affected functions) that eventually executes

the insecure _usableTokenId function (L100). Subsequently, an attacker can make a phishing attack to adjust

any loans’ collateral assets belonging to a phished user without their consent. Hence, this can harm the

Forward platform users’ assets.

Furthermore, we also found the insecure use of tx.origin on all the affected functions. For instance, the

adjustCollateral function is making use of the insecure tx.origin to refer to a loan owner (L107 and L114) that

is prone to be phished.

CoreBorrowing.sol

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

function adjustCollateral(

uint256 loanId,

uint256 nftId,

uint256 collateralAdjustAmount,

bool isAdd

) external payable whenFuncNotPaused(msg.sig) nonReentrant returns (Loan memory)

{

nftId = _getUsableToken(nftId);

Loan storage loan = loans[nftId][loanId];

Loan memory loanData = _adjustCollateral(loanId, nftId,

collateralAdjustAmount, isAdd);

if (isAdd) {

// add colla to core

_transferFromIn(

tx.origin,

address(this),

loan.collateralTokenAddress,

PUBLIC 32

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

110

111

112

113

114

115

116

117

collateralAdjustAmount

);

} else {

// withdraw colla to user

_transferOut(tx.origin, loan.collateralTokenAddress,

collateralAdjustAmount);

}

return loanData;

}

Listing 6.2 The adjustCollateral, one of the affected functions
that make use of the insecure _usableTokenId function as well as insecure tx.origin

Recommendations

We recommend updating the _usableTokenId function like the code snippet 6.3. The improved function

guarantees that only the EOA (Externally Owned Account) users would be able to authenticate and prove

ownership of the Membership NFTs (L155) as well as preventing the phishing attacks previously discussed

(L157 and L160).

Membership.sol

154

155

156

157

158

159

160

161

162

163

function _usableTokenId(uint256 tokenId) internal view returns (uint256) {

require(msg.sender == tx.origin,

"Membership/do-not-support-smart-contract");

if (tokenId == 0) {

tokenId = _defaultMembership[msg.sender];

require(tokenId != 0, "Membership/do-not-owned-any-membership-card");

} else {

require(ownerOf(tokenId) == msg.sender,

"Membership/caller-is-not-card-owner");

}

return tokenId;

}

Listing 6.3 The improved _usableTokenId function

Furthermore, we also recommend updating all the affected functions (including the adjustCollateral function)

that are making use of the insecure tx.origin like the code snippet 6.4. Specifically, the adjustCollateral

function is improved by using the msg.sender instead of the tx.origin (L107 and L114). The msg.sender

always guarantees that we are referring to the function caller, preventing phishing attacks.

PUBLIC 33

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreBorrowing.sol

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

function adjustCollateral(

uint256 loanId,

uint256 nftId,

uint256 collateralAdjustAmount,

bool isAdd

) external payable whenFuncNotPaused(msg.sig) nonReentrant returns (Loan memory)

{

nftId = _getUsableToken(nftId);

Loan storage loan = loans[nftId][loanId];

Loan memory loanData = _adjustCollateral(loanId, nftId,

collateralAdjustAmount, isAdd);

if (isAdd) {

// add colla to core

_transferFromIn(

msg.sender,

address(this),

loan.collateralTokenAddress,

collateralAdjustAmount

);

} else {

// withdraw colla to user

_transferOut(msg.sender, loan.collateralTokenAddress,

collateralAdjustAmount);

}

return loanData;

}

Listing 6.4 The improved adjustCollateral function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue by updating the _usableTokenId function as well as all the affected functions

as per our recommendation.

PUBLIC 34

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 7 Implementation Contracts May Not Be Upgradeable

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files All Solidity files directly or indirectly used by the APHPool and APHCore contracts

Locations Not specific

Detailed Issue

The APHPool and APHCore are designed to be implementation contracts supporting an upgradeable

feature. However, we found some conflict coding practices which may impede the contracts from upgrading.

1. Both implementation contracts inherit from non-upgradeable base contracts
For example, the PoolBase contract inherits from non-upgradeable base contracts (L5 - 13 in code

snippet 7.1) such as AssetHandler, Manager, ReentrancyGuard, Initializable, SelectorPausable, etc.

The following lists all contracts that need to support upgradeable.
- ./contracts/src/pool/APHPool.sol

- ./contracts/src/pool/APHPoolProxy.sol

- ./contracts/src/pool/PoolBase.sol

- ./contracts/src/pool/PoolBaseFunc.sol

- ./contracts/src/pool/PoolBorrowing.sol

- ./contracts/src/pool/PoolLending.sol

- ./contracts/src/pool/PoolSetting.sol

- ./contracts/src/pool/PoolToken.sol

- ./contracts/src/core/APHCore.sol

- ./contracts/src/core/APHCoreProxy.sol

- ./contracts/src/core/CoreBase.sol

- ./contracts/src/core/CoreBaseFunc.sol

- ./contracts/src/core/CoreBorrowing.sol

- ./contracts/src/core/CoreFutureTrading.sol

- ./contracts/src/core/CoreSetting.sol

- ./contracts/src/utils/Manager.sol

- ./contracts/src/utils/AssetHandler.sol

- ./contracts/externalContract/openzeppelin/Math.sol

PUBLIC 35

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

- ./contracts/externalContract/openzeppelin/Context.sol

- ./contracts/externalContract/modify/SelectorPausable.sol

- ./contracts/externalContract/openzeppelin/Initializable.sol

- ./contracts/externalContract/openzeppelin/ReentrancyGuard.sol

- ./contracts/externalContract/openzeppelin/Address.sol

- And all their base contracts

2. Some base contracts define state variables without allocating the reserved storage slots
(__gaps)
As you can see in code snippet 7.1, the PoolBase contract defines state variables but does not

allocate the reserved storage slots (__gaps) which might not support contract upgrade in case there

might be some state variables need to be added in the future version of the contract.

The following lists the contracts that might need to allocate the reserved storage slots.
- ./contracts/src/core/CoreBase.sol

- ./contracts/src/pool/PoolBase.sol

- ./contracts/src/pool/PoolToken.sol

- ./contracts/src/utils/AssetHandler.sol

- ./contracts/src/utils/Manager.sol

- ./contracts/externalContract/modify/SelectorPausable.sol

- ./contracts/externalContract/openzeppelin/ReentrancyGuard.sol

3. Some base contracts initialize state variables in field declarations or constructors
Some base contracts such as AssetHandler (L11 and L15 in code snippet 7.2) initialize state

variables in field declarations or constructors which would be effective on the implementation

contracts only, not on the proxy contracts. Thus, the state variables would be left uninitialized on the

proxy contracts.

The following lists the contracts that initialize state variables in field declarations or
constructors.

- ./contracts/src/utils/AssetHandler.sol

- ./contracts/externalContract/openzeppelin/ReentrancyGuard.sol

PUBLIC 36

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolBase.sol

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

pragma solidity 0.8.7;

import "../../externalContract/openzeppelin/Address.sol";

import "../../externalContract/openzeppelin/ReentrancyGuard.sol";

import "../../externalContract/openzeppelin/Initializable.sol";

import "../../externalContract/modify/SelectorPausable.sol";

import "../utils/AssetHandler.sol";

import "../utils/Manager.sol";

contract PoolBase is AssetHandler, Manager, ReentrancyGuard, Initializable,

SelectorPausable {

struct Lend {

uint8 rank;

uint64 updatedTimestamp;

}

struct WithdrawResult {

uint256 principle;

uint256 tokenInterest;

uint256 forwInterest;

uint256 pTokenBurn;

uint256 itpTokenBurn;

uint256 ifpTokenBurn;

uint256 tokenInterestBonus;

uint256 forwInterestBonus;

}

uint256 internal WEI_UNIT; // // 1e18

uint256 internal WEI_PERCENT_UNIT; // // 1e20 (100*1e18 for

calculating percent)

uint256 public BLOCK_TIME; // // time between each block in

seconds

address public poolLendingAddress; // // address of pool lending logic

contract

address public poolBorrowingAddress; // // address of pool borrowing

logic contract

address public forwAddress; // // forw token's address

address public membershipAddress; // // address of membership

contract

address public interestVaultAddress; // // address of interestVault

contract

address public tokenAddress; // // address of token which pool

allows to lend

address public coreAddress; // // address of APHCore contract

mapping(uint256 => Lend) lenders; // // map nftId => rank

uint256 internal initialItpPrice;

PUBLIC 37

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

44

45

46

47

48

49

50

51

52

53

54

uint256 internal initialIfpPrice;

// borrowing interest params

uint256 public lambda; // // constant use for weight forw

token in iftPrice

uint256 public targetSupply; // // weighting factor to

proportional reduce utilOptimse vaule if total lending is less than targetSupply

uint256[10] public rates; // // list of target interest rate

at each util

uint256[10] public utils; // // list of utilization rate to

which each rate reached

uint256 public utilsLen; // // length of current active

rates and utils (both must be equl)

}

Listing 7.1 The PoolBase contract that does not support upgradeable

AssetHandler.sol

10

11

12

13

14

15

16

17

18

19

20

21

22

32

33

34

35

36

37

38

39

49

contract AssetHandler {

address public wethAddress = 0xae13d989daC2f0dEbFf460aC112a837C89BAa7cd;

//address public constant wethToken =

0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c // bsc (Wrapped BNB)

address public wethHandler = 0x64493B5B3419e116F9fbE3ec41cF2E65Ef15cAB6;

function _transferFromIn(

address from,

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

}

function _transferFromOut(

address from,

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

}

PUBLIC 38

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

50

51

52

53

54

55

65

66

function _transferOut(

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

}

}

Listing 7.2 The AssetHandler contract that initializes state variables in field declaration

Recommendations

We recommend updating both the APHPool and APHCore implementation contracts to ensure that the

contracts support the future upgrade as planned.

Consider the code snippets 7.3 and 7.4 below for example.

1. The PoolBase contract inherits from upgradeable base contracts only (L5 - 13 in code snippet 7.3).

Note: Some base contracts are inherited by both upgradeable and non-upgradeable contracts. Our

recommendation is to separate base contracts into two versions.

2. The PoolBase and AssetHandler contracts allocate the __gaps variables (L56 in code snippet 7.3

and L76 in code snippet 7.4 respectively) for the reserved storage slots.

3. The AssetHandler contract also initializes the wethAddress and wethHandler state variables using

the internal __AssetHandler_init_unchained function (L17 - 23 in code snippet 7.4) instead of the

field declaration or constructor.

PUBLIC 39

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolBase.sol

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

pragma solidity 0.8.7;

import "../../externalContract/openzeppelin-contracts/AddressUpgradeable.sol";

import

"../../externalContract/openzeppelin-contracts/ReentrancyGuardUpgradeable.sol";

import "../../externalContract/openzeppelin-contracts/Initializable.sol";

import "../../externalContract/modify/SelectorPausableUpgradeable.sol";

import "../utils/AssetHandlerUpgradeable.sol";

import "../utils/ManagerUpgradeable.sol";

contract PoolBase is AssetHandlerUpgradeable, ManagerUpgradeable,

ReentrancyGuardUpgradeable, Initializable, SelectorPausableUpgradeable {

struct Lend {

uint8 rank;

uint64 updatedTimestamp;

}

struct WithdrawResult {

uint256 principle;

uint256 tokenInterest;

uint256 forwInterest;

uint256 pTokenBurn;

uint256 itpTokenBurn;

uint256 ifpTokenBurn;

uint256 tokenInterestBonus;

uint256 forwInterestBonus;

}

uint256 internal WEI_UNIT; // // 1e18

uint256 internal WEI_PERCENT_UNIT; // // 1e20 (100*1e18 for

calculating percent)

uint256 public BLOCK_TIME; // // time between each block in

seconds

address public poolLendingAddress; // // address of pool lending logic

contract

address public poolBorrowingAddress; // // address of pool borrowing

logic contract

address public forwAddress; // // forw token's address

address public membershipAddress; // // address of membership

contract

address public interestVaultAddress; // // address of interestVault

contract

address public tokenAddress; // // address of token which pool

allows to lend

address public coreAddress; // // address of APHCore contract

mapping(uint256 => Lend) lenders; // // map nftId => rank

PUBLIC 40

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

uint256 internal initialItpPrice;

uint256 internal initialIfpPrice;

// borrowing interest params

uint256 public lambda; // // constant use for weight forw

token in iftPrice

uint256 public targetSupply; // // weighting factor to

proportional reduce utilOptimse vaule if total lending is less than targetSupply

uint256[10] public rates; // // list of target interest rate

at each util

uint256[10] public utils; // // list of utilization rate to

which each rate reached

uint256 public utilsLen; // // length of current active

rates and utils (both must be equl)

// Allocating __gap or not is up to the developer's decision

uint256[50] private __gap;

}

Listing 7.3 The improved PoolBase contract

AssetHandler.sol

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

contract AssetHandler is Initializable {

address public wethAddress;

//address public constant wethToken =

0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c // bsc (Wrapped BNB)

address public wethHandler;

function __AssetHandler_init_unchained(

address _wethAddress,

address _wethHandler

) internal onlyInitializing {

wethAddress = _wethAddress;

wethHandler = _wethHandler;

}

function _transferFromIn(

address from,

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

PUBLIC 41

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

40

41

42

43

44

45

46

47

57

58

59

60

61

62

63

73

74

75

76

77

}

function _transferFromOut(

address from,

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

}

function _transferOut(

address to,

address token,

uint256 amount

) internal {

// (...SNIPPED...)

}

// Allocating __gap or not is up to the developer's decision

uint256[50] private __gap;

}

Listing 7.4 The improved AssetHandler contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 42

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 8 Uninitialized Base Contracts

Risk High
Likelihood High

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/core/APHCore.sol

./contracts/src/pool/APHPool.sol

./contracts/src/utils/AssetHandler.sol

./contracts/externalContract/openzeppelin/ReentrancyGuard.sol

Locations

APHCore.sol L: 11 - 33

APHPool.sol L: 12 - 39

AssetHandler.sol L: 11 and 15

ReentrancyGuard.sol L: 40

Detailed Issue

We found that the APHCore and APHPool implementation contracts do not initialize their base contracts’

state variables. The base contracts in question include AssetHandler and ReentrancyGuard.

The root cause of this issue is that both the AssetHandler and ReentrancyGuard base contracts do not

support an upgradeable feature. Therefore, initializing state variables using the field declaration (L11 and L15

in code snippet 8.1) or constructor (L40 in code snippet 8.2) would not be effective on the proxy contracts.

Consequently, the resulting uninitialized state variables can render the proxy contracts unusable.

AssetHandler.sol

10

11

12

13

14

15

66

contract AssetHandler {

address public wethAddress = 0xae13d989daC2f0dEbFf460aC112a837C89BAa7cd;

//address public constant wethToken =

0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c // bsc (Wrapped BNB)

address public wethHandler = 0x64493B5B3419e116F9fbE3ec41cF2E65Ef15cAB6;

// (...SNIPPED...)

}

Listing 8.1 The AssetHandler contract that initializes state variables in field declaration

PUBLIC 43

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

ReentrancyGuard.sol

22

34

35

36

37

38

39

40

41

63

abstract contract ReentrancyGuard {

// (...SNIPPED...)

uint256 private constant _NOT_ENTERED = 1;

uint256 private constant _ENTERED = 2;

uint256 private _status;

constructor() {

_status = _NOT_ENTERED;

}

// (...SNIPPED...)

}

Listing 8.2 The ReentrancyGuard contract that initializes a state variable using the constructor

Recommendations

To remediate this issue, we recommend updating the AssetHandler and ReentrancyGuard base contracts to

support an upgradeable feature and initializing their state variables using initialize functions.

For example, the AssetHandler contract can initialize its state variables using the

__AssetHandler_init_unchained function (L17 - 23 in the code snippet below). Whereas, the

ReentrancyGuard can be upgraded to be the ReentrancyGuardUpgradeable. For more details, please refer

to https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/security/Ree

ntrancyGuardUpgradeable.sol.

AssetHandler.sol

10

11

12

13

14

15

16

17

18

19

20

21

22

contract AssetHandler is Initializable {

address public wethAddress;

//address public constant wethToken =

0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c // bsc (Wrapped BNB)

address public wethHandler;

function __AssetHandler_init_unchained(

address _wethAddress,

address _wethHandler

) internal onlyInitializing {

wethAddress = _wethAddress;

wethHandler = _wethHandler;

PUBLIC 44

https://github.com/OpenZeppelin/
https://github.com/OpenZeppelin/

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

23

77

}

// (...SNIPPED...)

}

Listing 8.3 The improved AssetHandler contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 45

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 9 Transaction Revert On Loan Repayment

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/core/CoreBorrowing.sol

./contracts/src/utils/AssetHandler.sol

Locations
CoreBorrowing.sol L: 46 - 87

AssetHandler.sol L: 17 - 32

Detailed Issue

We found transaction revert issues on the repay function (code snippet 9.1) of the CoreBorrowing contract.

During the repayment process, if the loan’s borrowing token is the WETH, the transaction can be reverted

when the function executes the _transferFromIn function in order to transfer Ethers (native coin) from the

function caller to the corresponding APHPool (L70 - 75) and APHPool’s interest vault (L77 - 82).

The root cause of the transaction reverts is because the _transferFromIn function strictly checks the number

of Ethers sent from the function caller must equal the given amount (L26 in code snippet 9.2).

CoreBorrowing.sol

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

function repay(

uint256 loanId,

uint256 nftId,

uint256 repayAmount,

bool isOnlyInterest

)

external

payable

whenFuncNotPaused(msg.sig)

nonReentrant

returns (uint256 borrowPaid, uint256 interestPaid)

{

nftId = _getUsableToken(nftId);

Loan storage loan = loans[nftId][loanId];

bool isLoanClosed;

uint256 tmpCollateralAmount = loan.collateralAmount;

(borrowPaid, interestPaid, isLoanClosed) = _repay(

loanId,

nftId,

PUBLIC 46

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

repayAmount,

isOnlyInterest

);

if (borrowPaid > 0) {

_transferFromIn(

tx.origin,

assetToPool[loan.borrowTokenAddress],

loan.borrowTokenAddress,

borrowPaid

);

}

_transferFromIn(

tx.origin,

IAPHPool(assetToPool[loan.borrowTokenAddress]).interestVaultAddress(),

loan.borrowTokenAddress,

interestPaid

);

if (isLoanClosed) {

_transferOut(tx.origin, loan.collateralTokenAddress,

tmpCollateralAmount);

}

return (borrowPaid, interestPaid);

}

Listing 9.1 The repay function of the CoreBorrowing contract

AssetHandler.sol

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

function _transferFromIn(

address from,

address to,

address token,

uint256 amount

) internal {

require(amount != 0, "AssetHandler/amount-is-zero");

if (token == wethAddress) {

require(amount == msg.value, "AssetHandler/value-not-matched");

IWethERC20(wethAddress).deposit{value: amount}();

IWethERC20(wethAddress).transfer(to, amount);

} else {

IERC20(token).transferFrom(from, to, amount);

}

}

Listing 9.2 The _transferFromIn function of the AssetHandler contract

PUBLIC 47

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend improving the repay function like the below code snippet. The improved function separates

the logic for handling the loan’s borrowing token into two parts. The first part handles the case of the

borrowing token is WETH (L69 - 97). The second part handles the case of the borrowing token is non-WETH

(L98 - 113).

CoreBorrowing.sol

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

function repay(

uint256 loanId,

uint256 nftId,

uint256 repayAmount,

bool isOnlyInterest

)

external

payable

whenFuncNotPaused(msg.sig)

nonReentrant

returns (uint256 borrowPaid, uint256 interestPaid)

{

nftId = _getUsableToken(nftId);

Loan storage loan = loans[nftId][loanId];

bool isLoanClosed;

uint256 tmpCollateralAmount = loan.collateralAmount;

(borrowPaid, interestPaid, isLoanClosed) = _repay(

loanId,

nftId,

repayAmount,

isOnlyInterest

);

if (loan.borrowTokenAddress == wethAddress) {

require(msg.value >= borrowPaid + interestPaid,

"CoreBorrowing/insufficient-ether-amount");

// Ether -> WETH

_transferFromIn(

msg.sender,

address(this),

wethAddress,

msg.value

);

if (borrowPaid > 0) {

IERC20(wethAddress).safeTransfer(

assetToPool[wethAddress],

borrowPaid

);

PUBLIC 48

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

}

IERC20(wethAddress).safeTransfer(

IAPHPool(assetToPool[wethAddress]).interestVaultAddress(),

interestPaid

);

// Return the remaining Ethers

_transferOut(

msg.sender,

wethAddress,

msg.value - (borrowPaid + interestPaid)

);

}

else { // loan.borrowTokenAddress == non-WETH token

if (borrowPaid > 0) {

_transferFromIn(

tx.origin,

assetToPool[loan.borrowTokenAddress],

loan.borrowTokenAddress,

borrowPaid

);

}

_transferFromIn(

tx.origin,

IAPHPool(assetToPool[loan.borrowTokenAddress]).interestVaultAddress(),

loan.borrowTokenAddress,

interestPaid

);

}

if (isLoanClosed) {

_transferOut(tx.origin, loan.collateralTokenAddress,

tmpCollateralAmount);

}

return (borrowPaid, interestPaid);

}

Listing 9.3 The improved repay function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue in accordance with our recommendation.

PUBLIC 49

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 10 Malfunction Of Rollover Function

Risk High
Likelihood High

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 119 - 135

Detailed Issue

We found that the rollover function (the code snippet below) does not function as expected.

1. Wrong function description
The rollover function is intended to be called by anyone and the function caller will get a bounty

reward as an incentive.

However, we found that the function description (L124 - 125) is incorrect as it states that the delay

fee would be an incentive, not the bounty reward.

2. Other users cannot call the function
We found that the function calls the _getUsableToken function (L133) to get a usable nftId. Since the

_getUsableToken function is intended to authenticate and prove that the function caller is the owner

of the inputted nftId.

Therefore, the rollover function would not be able to be executed by other users, except the loan’s

owner.

3. No bounty reward for a function caller
The rollover function does not send a bounty reward to the function caller.

4. Wrong function argument
The rollover function passes “address(this)” as a caller into the internal function _rollover which is a

wrong argument (L134).

PUBLIC 50

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreBorrowing.sol

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

/**

@dev Function to rollover loan with the given loanId and nftId.

Rollover is similar to close and open loan again to change loan's

interest rate.

If loan opened longer than 28 days, the interest from extended duration

is calculated

with delay fees (ex: 5%)

This function can be call by anyone, non-owner who rollver overdue loan

receives

delay fees as an incentive.

*/

function rollover(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (uint256, uint256)

{

nftId = _getUsableToken(nftId);

return _rollover(loanId, nftId, address(this));

}

Listing 10.1 The malfunctioning function rollover

Recommendations

We recommend updating the rollover function to function as expected. The code snippet below presents
an idea of improving the function only. However, the function should be updated according to its
functional design.

The improved rollover function can be described as follows.

1. Correct function description
The function description was corrected in L125.

2. Anyone can call the function
The function was updated to allow anyone to execute (L134).

3. Bounty reward for a function caller (excepting the loan’s owner)
The function was updated according to its description. In other words, it would send a bounty reward

to a function caller, except the loan’s owner (L136 - 139).

4. Correct function argument
The _rollover’s function argument was updated by passing the msg.sender instead in L134.

PUBLIC 51

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreBorrowing.sol

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

/**

@dev Function to rollover loan with the given loanId and nftId.

Rollover is similar to close and open loan again to change loan's

interest rate.

If loan opened longer than 28 days, the interest from extended duration

is calculated

with delay fees (ex: 5%)

This function can be called by anyone, non-owner who rollvers overdue

loan receives

a bounty reward as an incentive.

*/

function rollover(uint256 loanId, uint256 nftId)

external

whenFuncNotPaused(msg.sig)

nonReentrant

returns (uint256, uint256)

{

Loan storage loan = loans[nftId][loanId];

(uint256 delayInterest, uint256 bountyReward) = _rollover(loanId, nftId,

msg.sender);

// Only user who is not a loan owner will get a bounty reward

if (_getTokenOwnership(nftId) != msg.sender) {

_transferOut(msg.sender, loan.collateralTokenAddress, bountyReward);

}

return (delayInterest, bountyReward);

}

Listing 10.2 The improved rollover function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue by reworking the rollover function. The function would be executable by the

loan’s owner only, and the owner has to pay for both the delay interest and the bounty reward in terms of the

loan’s borrowing interest that would eventually be rewarded to all lenders in the pool.

PUBLIC 52

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 11 Potential Loss Of Pool’s Asset

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 479 - 573

Detailed Issue

We found that the _liquidate function does not handle the critical case in which a liquidated loan cannot be

closed a position as shown in the below code snippet in L551 - 555. If this critical case is left unhandled, the

affected pool may gradually lose its asset (borrowing token).

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

545

546

547

548

549

550

551

552

553

554

555

556

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

if (loanExts[nftId][loanId].active == true) {

// TODO (future work): handle with ciritical condition, this part

must add pool subsidisation for pool loss

// Ciritical condition, protocol loss

// transfer int or sth else to pool

} else {

bountyReward = (leftOverCollateral * loanConfig.bountyFeeRate) /

WEI_PERCENT_UNIT;

PUBLIC 53

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

557

558

573

leftOverCollateral -= bountyReward;

}

// (...SNIPPED...)

}

Listing 11.1 The _liquidate function does not handle the critical case
in which a liquidated loan cannot be closed a position

Recommendations

We recommend updating the _liquidate function to handle the critical case or implementing a monitoring

system to keep track of the asset balance of each pool and fill up the pool with its corresponding asset

(borrowing token) to cover up the pool’s loss (for a middle-term plan).

Reassessment

The FWX team acknowledged this issue. For the short-term and middle-term plans, the FWX team will

implement an off-chain monitoring system to address the pools’ loss. For the long-term plan, the team will

upgrade the APHCore contract to handle the associated critical case.

PUBLIC 54

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 12 Loss Of Collateral Asset During Price Feeding System’s Pause

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/core/CoreBorrowing.sol

./contracts/src/utils/PriceFeed.sol

Locations
CoreBorrowing.sol L: 479 - 573

PriceFeed.sol L: 45 - 56

Detailed Issue

The _liquidate function queries the maximum swappable amount (numberArray[2]) by calling the

queryReturn function (L520 - 524 in code snippet 12.1). Then, the maximum swappable amount will be used

to determine two liquidation conditions (L527 - 535 for a normal condition and L537 - 543 for a critical

condition).

The execution flow will enter the critical condition (L537 - 543) if the calculated maximum swappable amount

is less than or equal to the loan’s total debt (L526).

We found that the queryReturn function would always return zero (0) if the price feeding system is paused

(L50 - 52 in code snippet 12.2). As a result, the execution flow would be forced to enter the critical condition

(L537 - 543 in code snippet 12.1) regardless of the (real) value of the collateral asset.

Subsequently, the total loan’s collateral asset would be forced to swap for a borrowing token to repay the

liquidated loan (L549 in code snippet 12.1). Since the swapped borrowing token amount is overabundant, the

leftover borrowing tokens would be locked in the APHCore contract and never be returned to the loan

borrower.

CoreBorrowing.sol

479

480

481

482

483

484

485

486

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

PUBLIC 55

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

487

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

573

{

// (...SNIPPED...)

address[] memory path_data = new address[](2);

path_data[0] = loan.collateralTokenAddress;

path_data[1] = loan.borrowTokenAddress;

uint256[] memory amounts;

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

// (...SNIPPED...)

}

Listing 12.1 The _liquidate function of the CoreBorrowing contract

PUBLIC 56

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PriceFeed.sol

45

46

47

48

49

50

51

52

53

54

55

56

function queryReturn(

address sourceToken,

address destToken,

uint256 sourceAmount

) public view returns (uint256 destAmount) {

if (globalPricingPaused) {

return 0;

}

(uint256 rate, uint256 precision) = _queryRate(sourceToken, destToken);

destAmount = (sourceAmount * rate) / precision;

}

Listing 12.2 The queryReturn function of the PriceFeed contract

Recommendations

We recommend updating the queryReturn function to revert transactions during the pause of the price

feeding system like L50 in the code snippet below.

PriceFeed.sol

45

46

47

48

49

50

51

52

53

54

55

function queryReturn(

address sourceToken,

address destToken,

uint256 sourceAmount

) public view returns (uint256 destAmount) {

require(!globalPricingPaused, "PriceFeed/pricing-is-paused");

(uint256 rate, uint256 precision) = _queryRate(sourceToken, destToken);

destAmount = (sourceAmount * rate) / precision;

}

Listing 12.3 The improved queryReturn function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed by reverting transactions during the pause of the price feeding system as suggested.

PUBLIC 57

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 13 Setting New Router May Halt Pool Token Swap

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreSetting.sol

Locations CoreSetting.sol L: 31 - 36 and 75 - 96

Detailed Issue

The registerNewPool function approves a router for transferring the APHPool’s corresponding token (L84 in

code snippet 13.1). This approval would be triggered once a protocol manager registers a new pool.

However, we found that if a manager sets a new router via the setRouterAddress function (code snippet

13.2), the new router would not be able to transfer tokens of existing pools (i.e., approved for the old router)

for a swap and there is no approach for the manager to approve the new router for those tokens.

CoreSetting.sol

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

function registerNewPool(

address _poolAddress,

uint256 _amount,

uint256 _targetBlock

) external onlyManager {

require(poolToAsset[_poolAddress] == address(0),

"CoreSetting/pool-is-already-exist");

address assetAddress = IAPHPool(_poolAddress).tokenAddress();

IERC20(forwAddress).approve(forwDistributorAddress, type(uint256).max);

IERC20(assetAddress).approve(routerAddress, type(uint256).max);

poolToAsset[_poolAddress] = assetAddress;

assetToPool[assetAddress] = _poolAddress;

swapableToken[assetAddress] = true;

poolList.push(_poolAddress);

lastSettleForw[_poolAddress] = block.number;

_setForwDisPerBlock(_poolAddress, _amount, _targetBlock);

emit RegisterNewPool(msg.sender, _poolAddress);

PUBLIC 58

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

96 }

Listing 13.1 The registerNewPool function

CoreSetting.sol

31

32

33

34

35

36

function setRouterAddress(address _address) external onlyManager {

address oldAddress = routerAddress;

routerAddress = _address;

emit SetRouterAddress(msg.sender, oldAddress, _address);

}

Listing 13.2 The setRouterAddress function

Recommendations

We recommend implementing the new functions approveForRouter and _approveForRouter as shown in

code snippet 13.3. For the external function approveForRouter (L99 - 104), a manager can approve a

specific token for the router directly.

Meanwhile, the internal function _approveForRouter (L106 - 112) can be called by the registerNewPool

function (L85 in code snippet 13.4) to approve the new pool’s token automatically.

CoreSetting.sol

99

100

101

102

103

104

105

106

107

108

109

110

111

112

function approveForRouter(

address _assetAddress

) external onlyManager {

require(assetToPool[_assetAddress] != address(0),

"CoreSetting/unsupported-asset");

_approveForRouter(_assetAddress);

}

function _approveForRouter(

address _assetAddress

) internal {

IERC20(_assetAddress).safeApprove(routerAddress, type(uint256).max);

emit ApprovedForRouter(msg.sender, _assetAddress, routerAddress);

}

Listing 13.3 The new approveForRouter and _approveForRouter functions

PUBLIC 59

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreSetting.sol

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

function registerNewPool(

address _poolAddress,

uint256 _amount,

uint256 _targetBlock

) external onlyManager {

require(poolToAsset[_poolAddress] == address(0),

"CoreSetting/pool-is-already-exist");

address assetAddress = IAPHPool(_poolAddress).tokenAddress();

IERC20(forwAddress).approve(forwDistributorAddress, type(uint256).max);

_approveForRouter(assetAddress);

poolToAsset[_poolAddress] = assetAddress;

assetToPool[assetAddress] = _poolAddress;

swapableToken[assetAddress] = true;

poolList.push(_poolAddress);

lastSettleForw[_poolAddress] = block.number;

_setForwDisPerBlock(_poolAddress, _amount, _targetBlock);

emit RegisterNewPool(msg.sender, _poolAddress);

}

Listing 13.4 The improved registerNewPool function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 60

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 14 Contract Upgradeable Without Time Delay

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files

All Solidity files regarding the following smart contracts and modules:
APHCore contract,

APHPool contract,

Core borrowing module,

Pool lending module,

and Pool borrowing module

Locations Not specific

Detailed Issue

The APHCore and APHPool are upgradeable smart contracts. Furthermore, the APHCore contract allows

the core borrowing module (via the setCoreBorrowingAddress function in code snippet 14.1) to upgrade its

internal logic without upgrading the main APHCore itself.

Also, the APHPool contract allows the pool lending module (via the setPoolLendingAddress function in code

snippet 14.2) and the pool borrowing module (via the setPoolBorrowingAddress function in code snippet

14.2) to upgrade their internal logic without upgrading the main APHPool itself.

We found that the upgrade mechanism is not bound to any time delay. This may raise concerns for users

since the contract upgrade may contain malicious code to exploit the users’ assets.

Moreover, imagine the case that a developer account is being compromised. An attacker can upgrade the

contract with malicious code. Without the time delay, the attacker can steal all assets on the platform

suddenly.

PUBLIC 61

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreSetting.sol

38

39

40

41

42

43

function setCoreBorrowingAddress(address _address) external onlyManager {

address oldAddress = coreBorrowingAddress;

coreBorrowingAddress = _address;

emit SetCoreBorrowingAddress(msg.sender, oldAddress, _address);

}

Listing 14.1 The setCoreBorrowingAddress function

PoolSetting.sol

66

67

68

69

70

71

72

73

74

75

76

77

78

function setPoolLendingAddress(address _address) external onlyManager {

address oldAddress = poolLendingAddress;

poolLendingAddress = _address;

emit SetPoolLendingAddress(msg.sender, oldAddress, _address);

}

function setPoolBorrowingAddress(address _address) external onlyManager {

address oldAddress = poolBorrowingAddress;

poolBorrowingAddress = _address;

emit SetPoolBorrowingAddress(msg.sender, oldAddress, _address);

}

Listing 14.2 The setPoolLendingAddress and setPoolBorrowingAddress functions

Recommendations

We recommend applying the Timelock contract to the upgrade mechanism as follows:

Developer -> Timelock -> ProxyAdmin -> Proxy -> Logic (Implementation)

With the Timelock contract, every time a developer upgrades the Logic contract, the upgrade transaction will

be deferred by the Timelock for some waiting period (e.g., 48 hours) configured by the developer. This

enables users to examine the source code of the upgrading contract before it is effective, providing

transparency.

The adoption of the Timelock also makes the contract upgrade more secure in case the developer finds

some bugs during the upgrade; the developer can cancel the upgrade transaction by invoking the Timelock.

Since the Forward protocol has several complex features, and each feature may require different Timelock

configurations, using a single Timelock instance to handle multiple time delays for all features may be

PUBLIC 62

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

cumbersome and can lead to transparency issues. The following figure is our suggested design (one of the

possible designs) that may be suitable for the Forward protocol.

Figure 14.1 Recommended design of using different Timelock instances
to handle several features with multiple time delays

There are three Timelock instances:

1. 48-hour Timelock instance for controlling the upgrade mechanism of the Logic contract (using the

ProxyAdmin as a managing contract for the Proxy contract).

2. 48-hour Timelock instance for managing critical administrative functions such as

setPoolLendingAddress, etc.

3. 12-hour Timelock instance for handling lower administrative functions such as setupLoanConfig,

etc.

For the pause and unPause functions, we consider them the kill-switch functions that should not be under

any Timelock. Hence, the developer would take a manager role to trigger these functions with no time delay.

Also, a user can execute any user-level functions without time constraints.

The above-recommended design provides the concept of how to remediate this issue only. The design

should be adjusted accordingly.

Reassessment

The FWX team adopted our suggested design to fix this issue.

PUBLIC 63

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 15 Inaccurate Calculation For Liquidation Point

Risk High
Likelihood High

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/APHCore.sol

Locations APHCore.sol L: 137 - 155

Detailed Issue

We found that the isLoanLiquidable function determines the liquidation point for a given loan inaccurately.

Specifically, the function does not include the unsettled (pending) interest in the calculation (L150 in the code

snippet below). In addition, the function does not take the loan’s minimum interest (loan.minInterest) into

account as well.

These make the isLoanLiquidable function calculate the liquidation point incorrectly (the loan’s LTV value will

be less than the real value).

We consider this issue high risk because this function would be typically called by liquidators. Thus, the

inaccurate results from this function would lead to the loss of users’ assets as well as protocol’s assets.

APHCore.sol

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

function isLoanLiquidable(uint256 nftId, uint256 loanId) external view returns

(bool) {

Loan storage loan = loans[nftId][loanId];

(uint256 rate, uint256 precision) = _queryRate(

loan.collateralTokenAddress,

loan.borrowTokenAddress

);

LoanConfig storage loanConfig = loanConfigs[loan.borrowTokenAddress][

loan.collateralTokenAddress

];

return

_isLoanLTVExceedTargetLTV(

loan.borrowAmount,

loan.collateralAmount,

loan.interestOwed,

loanConfig.liquidationLTV,

rate,

PUBLIC 64

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

153

154

155

precision

);

}

Listing 15.1 The isLoanLiquidable function

Recommendations

We recommend updating the isLoanLiquidable function to calculate an accurate liquidation point like the

code snippet below.

APHCore.sol

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

function isLoanLiquidable(uint256 nftId, uint256 loanId) external view returns

(bool) {

Loan storage loan = loans[nftId][loanId];

(uint256 rate, uint256 precision) = _queryRate(

loan.collateralTokenAddress,

loan.borrowTokenAddress

);

if (loan.collateralAmount == 0 || rate == 0) {

return false;

}

LoanConfig storage loanConfig = loanConfigs[loan.borrowTokenAddress][

loan.collateralTokenAddress

];

uint64 settleTimestamp = uint64(Math.min(block.timestamp,

loan.rolloverTimestamp));

uint256 totalInterest = loan.interestOwed;

if (settleTimestamp > loan.lastSettleTimestamp) {

totalInterest += ((loan.owedPerDay * (settleTimestamp -

loan.lastSettleTimestamp)) / 1 days);

}

totalInterest = Math.max(loan.minInterest, totalInterest);

return

_isLoanLTVExceedTargetLTV(

loan.borrowAmount,

loan.collateralAmount,

totalInterest,

loanConfig.liquidationLTV,

rate,

precision

PUBLIC 65

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

168

169

);

}

Listing 15.2 The improved isLoanLiquidable function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our suggestion.

PUBLIC 66

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 16 Flash Loan-Based Price Manipulation Attack On Liquidated Loan

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 479 - 573

Detailed Issue

We found that the _liquidate function can be attacked by price manipulation using a flash loan. This issue

can happen on a liquidated loan that cannot be closed a position due to an insufficiency of the loan’s

collateral amount.

Specifically, if the loan position cannot be closed, the execution flow of the _liquidate function would be

forced to swap all loan’s collateral amount for a borrowing token in L537 - 543 in the code snippet below.

At this point, we found that the execution of the swapExactTokensForTokens function does not specify a

proper minimum swapped-out amount for the borrowing token (amountOutMin parameter). In a word, the

amountOutMin parameter is currently set to zero (L539).

With the current setting, the swapExactTokensForTokens function would accept every swapped-out amount

(even if the zero amount). This insecure setting opens room for an attacker to perform flash loan-based price

manipulation attacks on the swap pools that the Forward protocol is using and take profit from the described

insecure swaps.

As a result, this issue can lead to a massive loss of borrowing assets of all pools, affecting the stability of the

Forward protocol.

CoreBorrowing.sol

479

480

481

482

483

484

485

486

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

PUBLIC 67

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

487

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

{

// (...SNIPPED...)

if (

_isLoanLTVExceedTargetLTV(

loan.borrowAmount,

loan.collateralAmount,

Math.max(loan.interestOwed, loan.minInterest),

loanConfig.liquidationLTV,

numberArray[0],

numberArray[1]

)

) {

address[] memory path_data = new address[](2);

path_data[0] = loan.collateralTokenAddress;

path_data[1] = loan.borrowTokenAddress;

uint256[] memory amounts;

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

// (...SNIPPED...)

PUBLIC 68

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

573 }

Listing 16.1 The _liquidate function that can be attacked by
the price manipulation using a flash loan

Recommendations

We recommend configuring the amountOutMin parameter properly for the swapExactTokensForTokens

function like L537 and L540 in the code snippet below.

The amountOutMin parameter would be calculated based on the following formula:

numberArray[2] * (WEI_PERCENT_UNIT - percentDiffAcceptable)
/ WEI_PERCENT_UNIT

Where

- numberArray[2] represents a maximum swappable amount for a borrowing token

- WEI_PERCENT_UNIT represents a constant value of 100%

- percentDiffAcceptable represents an acceptable slippage value in percentage

(percentDiffAcceptable < WEI_PERCENT_UNIT)

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

505

506

507

508

509

510

511

512

513

514

515

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

if (

_isLoanLTVExceedTargetLTV(

loan.borrowAmount,

loan.collateralAmount,

Math.max(loan.interestOwed, loan.minInterest),

loanConfig.liquidationLTV,

numberArray[0],

numberArray[1]

)

) {

address[] memory path_data = new address[](2);

PUBLIC 69

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

450

574

path_data[0] = loan.collateralTokenAddress;

path_data[1] = loan.borrowTokenAddress;

uint256[] memory amounts;

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

uint256 amountOutMin = numberArray[2] * (WEI_PERCENT_UNIT -

percentDiffAcceptable) / WEI_PERCENT_UNIT;

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

amountOutMin, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

// (...SNIPPED...)

}

Listing 16.2 The improved _liquidate function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue as per our recommendation.

PUBLIC 70

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 17 Removal Recommendation For Mock Function

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/pool/InterestVault.sol

Locations InterestVault.sol L: 51 - 54

Detailed Issue

We found the mock function named approveInterestVault (the code snippet below) that should not be put in

production. This mock function allows a manager to approve unlimited Forward token transfers from an

InterestVault contract to any arbitrary address.

InterestVault.sol

51

52

53

54

// TODO: need to make it testable

function approveInterestVault(address _pool) external onlyManager {

IERC20(forw).approve(_pool, type(uint256).max);

}

Listing 17.1 The mock function approveInterestVault

Recommendations

We recommend removing the mock function approveInterestVault from the InterestVault contract.

Reassessment

This issue was fixed by removing the approveInterestVault function in accordance with our recommendation.

PUBLIC 71

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 18 Reentrancy Attack to Steal All Forward Tokens From Distributor

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/core/CoreBaseFunc.sol

./contracts/src/core/APHCore.sol

Locations
CoreBaseFunc.sol L: 26 - 61

APHCore.sol L: 40 - 49

Detailed Issue

The settleForwInterest function is typically called by pools to settle Forward interest to the pool’s interest

vault as shown in code snippet 18.1. The settleForwInterest function calls the internal function

_settleForwInterest (L42) to calculate an amount of Forward interest to settle (L47).

We found that if an attacker is able to manage to deploy a mock pool contract somehow (e.g., by phishing

attacks). The attacker can invoke a reentrancy attack on the settleForwInterest function to steal all Forward

tokens from the Forward distributor.

The root cause of this issue resides in L60 in the _settleForwInterest function (code snippet 18.2).

Specifically, the _settleForwInterest function makes a call (L53 - 59) to an external contract (i.e., the

attacker’s contract) before updating the mapping lastSettleForw (L60). This coding pattern enables the

attacker to execute a reentrancy attack.

PUBLIC 72

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

APHCore.sol

40

41

42

43

44

45

46

47

48

49

function settleForwInterest() external {

require(poolToAsset[msg.sender] != address(0),

"APHCore/caller-is-not-pool");

uint256 forwAmount = _settleForwInterest();

_transferFromOut(

forwDistributorAddress,

IAPHPool(msg.sender).interestVaultAddress(),

forwAddress,

forwAmount

);

}

Listing 18.1 The external settleForwInterest function of the APHCore contract

CoreBaseFunc.sol

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

function _settleForwInterest() internal returns (uint256 forwAmount) {

if (lastSettleForw[msg.sender] != 0) {

uint256 targetBlock = nextForwDisPerBlock[msg.sender].targetBlock;

uint256 newForwDisPerBlock = nextForwDisPerBlock[msg.sender].amount;

if (targetBlock != 0) {

if (targetBlock >= block.number) {

forwAmount =

(block.number - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender];

} else {

forwAmount =

((targetBlock - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender]) +

((block.number - targetBlock) * newForwDisPerBlock);

}

if (targetBlock <= block.number) {

forwDisPerBlock[msg.sender] = newForwDisPerBlock;

nextForwDisPerBlock[msg.sender] = NextForwDisPerBlock(0, 0);

}

} else {

forwAmount =

(block.number - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender];

}

}

if (forwAmount != 0) {

IInterestVault(IAPHPool(msg.sender).interestVaultAddress()).

settleInterest(

0,

PUBLIC 73

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

56

57

58

59

60

61

0,

forwAmount

);

}

lastSettleForw[msg.sender] = block.number;

}

Listing 18.2 The internal _settleForwInterest function of the CoreBaseFunc contract

Recommendations

We recommend updating the _settleForwInterest function according to the code snippet below. That is, the

function would update the mapping lastSettleForw (L53) before making a call to an external contract (L55 -

61).

CoreBaseFunc.sol

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

function _settleForwInterest() internal returns (uint256 forwAmount) {

if (lastSettleForw[msg.sender] != 0) {

uint256 targetBlock = nextForwDisPerBlock[msg.sender].targetBlock;

uint256 newForwDisPerBlock = nextForwDisPerBlock[msg.sender].amount;

if (targetBlock != 0) {

if (targetBlock >= block.number) {

forwAmount =

(block.number - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender];

} else {

forwAmount =

((targetBlock - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender]) +

((block.number - targetBlock) * newForwDisPerBlock);

}

if (targetBlock <= block.number) {

forwDisPerBlock[msg.sender] = newForwDisPerBlock;

nextForwDisPerBlock[msg.sender] = NextForwDisPerBlock(0, 0);

}

} else {

forwAmount =

(block.number - lastSettleForw[msg.sender]) *

forwDisPerBlock[msg.sender];

}

}

lastSettleForw[msg.sender] = block.number;

if (forwAmount != 0) {

PUBLIC 74

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

56

57

58

59

60

61

62

IInterestVault(IAPHPool(msg.sender).interestVaultAddress()).

settleInterest(

0,

0,

forwAmount

);

}

}

Listing 18.3 The improved _settleForwInterest function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue in accordance with our recommendation.

PUBLIC 75

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 19 No Allowlist For Collateral Tokens

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/core/CoreBorrowing.sol

./contracts/src/pool/PoolBorrowing.sol

Locations Not specific

Detailed Issue

The Forward protocol has an allowlist for borrowing tokens in which a protocol manager has to grant and

register all borrowing tokens supported. However, we found that the protocol does not control an allowlist for

collateral tokens.

Since the protocol feeds the prices of tokens through the Chainlink protocol, only ERC-20 tokens supported

by Chainlink can be used as collateral tokens. However, we consider that relying on the security protection

mechanisms of other systems is not the best idea for smart contract security design.

Consider the case that an attacker can somehow manage to feed their token to the protocol. The attacker’s

managed token may be a low-liquidity or unstable token. Hence, this could open room for an attacker to

exploit the Forward protocol by using the managed token as loan collateral.

Recommendations

We recommend adding an allowlist for collateral tokens. The allowlist not only improves the security layer of

the Forward protocol but also increases control flexibility for a protocol manager. In other words, a manager

can even allow appropriate tokens as collateral for any specific borrowing tokens.

PUBLIC 76

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

The FWX team fixed this issue by implementing an allowlist check for collateral tokens in the _borrow

function as presented in L219 - 222 in the code snippet below. Thus, the protocol would accept only tokens

allowed for lending as collateral tokens.

CoreBorrowing.sol

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

330

// internal function

function _borrow(

uint256 loanId,

uint256 nftId,

uint256 borrowAmount,

address borrowTokenAddress,

uint256 collateralSentAmount,

address collateralTokenAddress,

uint256 newOwedPerDay,

uint256 interestRate

) internal returns (Loan memory) {

require(

msg.sender == assetToPool[borrowTokenAddress],

"CoreBorrowing/permission-denied-for-borrow"

);

require(

assetToPool[collateralTokenAddress] != address(0),

"CoreBorrowing/collateral-token-address-is-not-allowed"

);

// (...SNIPPED...)

}

Listing 19.1 The revised _borrow function applying an allowlist for collateral tokens

PUBLIC 77

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 20 Misplaced Transfer Approval For Forward Distributor

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreSetting.sol

Locations CoreSetting.sol L: 24 - 29 and 75 - 96

Detailed Issue

The registerNewPool function approves a Forward distributor account for transferring Forward token (L83 in

code snippet 20.1). This approval would be triggered once a protocol manager registers a new pool.

However, we found that if a manager sets a new Forward distributor account via the

setForwDistributorAddress function (code snippet 20.2), the new distributor account would not be approved

automatically. The only way for the new distributor account to get approval is that the manager has to invoke

the registerNewPool function which is not a practical approach.

CoreSetting.sol

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

function registerNewPool(

address _poolAddress,

uint256 _amount,

uint256 _targetBlock

) external onlyManager {

require(poolToAsset[_poolAddress] == address(0),

"CoreSetting/pool-is-already-exist");

address assetAddress = IAPHPool(_poolAddress).tokenAddress();

IERC20(forwAddress).approve(forwDistributorAddress, type(uint256).max);

IERC20(assetAddress).approve(routerAddress, type(uint256).max);

poolToAsset[_poolAddress] = assetAddress;

assetToPool[assetAddress] = _poolAddress;

swapableToken[assetAddress] = true;

poolList.push(_poolAddress);

lastSettleForw[_poolAddress] = block.number;

_setForwDisPerBlock(_poolAddress, _amount, _targetBlock);

PUBLIC 78

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

95

96

emit RegisterNewPool(msg.sender, _poolAddress);

}

Listing 20.1 The registerNewPool function

CoreSetting.sol

24

25

26

27

28

29

function setForwDistributorAddress(address _address) external onlyManager {

address oldAddress = forwDistributorAddress;

forwDistributorAddress = _address;

emit SetForwDistributorAddress(msg.sender, oldAddress, _address);

}

Listing 20.2 The setForwDistributorAddress function

Recommendations

We recommend moving the approval logic from the registerNewPool function to the

setForwDistributorAddress function as shown in the code snippet below.

In L28, the function resets a transfer allowance from the old distributor account and approves the transfer to

the new distributor account in L29. Furthermore, we also recommend using the standard SafeERC20’s

safeApprove function instead of the ERC20’s approve function for better security.

CoreSetting.sol

24

25

26

27

28

29

30

31

32

function setForwDistributorAddress(address _address) external onlyManager {

address oldAddress = forwDistributorAddress;

forwDistributorAddress = _address;

IERC20(forwAddress).safeApprove(oldAddress, 0);

IERC20(forwAddress).safeApprove(forwDistributorAddress, type(uint256).max);

emit SetForwDistributorAddress(msg.sender, oldAddress, _address);

}

Listing 20.3 The improved setForwDistributorAddress function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue as per our suggestion.

PUBLIC 79

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 21 Incorrect Calculation For Bounty Reward

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/pool/PoolSetting.sol

./contracts/src/core/CoreSetting.sol

./contracts/src/core/CoreBorrowing.sol

Locations

PoolSetting.sol L: 35 - 64

CoreSetting.sol L: 128 - 169

CoreBorrowing.sol L: 479 - 573

Detailed Issue

The bountyFeeRate parameter can be set by a protocol manager via two external functions:

setupLoanConfig functions of the PoolSetting (code snippet 21.1) and the CoreSetting (code snippet 21.2)

contracts.

We found that both functions do not perform sanitization checks on the bountyFeeRate parameter. The

bountyFeeRate parameter is used in the _liquidate function to calculate the bountyReward in L556 in code

snippet 21.3.

At this point, if the bountyFeeRate is set to be more than the WEI_PERCENT_UNIT parameter, the resulting

bountyReward would become an incorrect value and would make the transaction be reverted due to the

underflow error in L557 while calculating the leftOverCollateral.

PoolSetting.sol

35

36

37

38

39

40

41

42

43

44

45

function setupLoanConfig(

address _collateralTokenAddress,

uint256 _safeLTV,

uint256 _maxLTV,

uint256 _liqLTV,

uint256 _bountyFeeRate

) external onlyManager {

require(

_safeLTV < _maxLTV && _maxLTV < _liqLTV && _liqLTV < WEI_PERCENT_UNIT,

"PoolSetting/invalid-loan-config"

);

PUBLIC 80

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

IAPHCoreSetting(coreAddress).setupLoanConfig(

tokenAddress,

_collateralTokenAddress,

_safeLTV,

_maxLTV,

_liqLTV,

_bountyFeeRate

);

emit SetLoanConfig(

msg.sender,

_collateralTokenAddress,

_safeLTV,

_maxLTV,

_liqLTV,

_bountyFeeRate

);

}

Listing 21.1 The setupLoanConfig function of the PoolSetting contract

CoreSetting.sol

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

function setupLoanConfig(

address _borrowTokenAddress,

address _collateralTokenAddress,

uint256 _safeLTV,

uint256 _maxLTV,

uint256 _liquidationLTV,

uint256 _bountyFeeRate

) external {

require(

poolToAsset[msg.sender] != address(0) || msg.sender == manager,

"CoreSetting/permission-denied-for-setup-loan-config"

);

require(

_borrowTokenAddress != _collateralTokenAddress &&

assetToPool[_borrowTokenAddress] != address(0) &&

assetToPool[_collateralTokenAddress] != address(0),

"CoreSetting/_borrowTokenAddress-is-not-registered-yet"

);

LoanConfig memory configOld =

loanConfigs[_borrowTokenAddress][_collateralTokenAddress];

LoanConfig storage config =

loanConfigs[_borrowTokenAddress][_collateralTokenAddress];

config.borrowTokenAddress = _borrowTokenAddress;

config.collateralTokenAddress = _collateralTokenAddress;

config.safeLTV = _safeLTV;

PUBLIC 81

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

config.maxLTV = _maxLTV;

config.liquidationLTV = _liquidationLTV;

config.bountyFeeRate = _bountyFeeRate;

emit SetupLoanConfig(

msg.sender,

_borrowTokenAddress,

_collateralTokenAddress,

configOld.safeLTV,

configOld.maxLTV,

configOld.liquidationLTV,

configOld.bountyFeeRate,

config.safeLTV,

config.maxLTV,

config.liquidationLTV,

config.bountyFeeRate

);

}

Listing 21.2 The setupLoanConfig function of the CoreSetting contract

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

549

550

551

552

553

554

555

556

557

558

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

if (loanExts[nftId][loanId].active == true) {

// TODO (future work): handle with ciritical condition, this part

must add pool subsidisation for pool loss

// Ciritical condition, protocol loss

// transfer int or sth else to pool

} else {

bountyReward = (leftOverCollateral * loanConfig.bountyFeeRate) /

WEI_PERCENT_UNIT;

leftOverCollateral -= bountyReward;

}

// (...SNIPPED...)

PUBLIC 82

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

573 }

Listing 21.3 The _liquidate function of the CoreBorrowing contract

Recommendations

We recommend adding sanitization checks on the bountyFeeRate parameter, making sure that the value
would not be greater than the WEI_PERCENT_UNIT parameter or any appropriate value, on both the

setupLoanConfig functions of the PoolSetting and the CoreSetting contracts.

Reassessment

The FWX team fixed this issue by adding sanitization checks on the bountyFeeRate parameter to make sure

that its value would not be greater than the WEI_PERCENT_UNIT parameter.

PUBLIC 83

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 22 Lack Of Sanitization Checks On Loan Config Parameters

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/pool/PoolSetting.sol

./contracts/src/core/CoreSetting.sol

Locations
PoolSetting.sol L: 35 - 64

CoreSetting.sol L: 128 - 169

Detailed Issue

The loan config parameters can be set by a protocol manager by way of calling the setupLoanConfig

functions of the PoolSetting and CoreSetting contracts. Nonetheless, we found some input parameters on

those functions are not performed sanitization checks which can lead to incorrect calculations of the

CoreBorrowing module such as calculating a bounty reward or loan liquidation.

The following lists input parameters left unchecked.

● _bountyFeeRate in the setupLoanConfig function of the PoolSetting contract (L40 in code snippet

22.1)

● _safeLTV in the setupLoanConfig function of the CoreSetting contract (L131 in code snippet 22.2)

● _maxLTV in the setupLoanConfig function of the CoreSetting contract (L132 in code snippet 22.2)

● _liquidationLTV in the setupLoanConfig function of the CoreSetting contract (L133 in code snippet

22.2)

● _bountyFeeRate in the setupLoanConfig function of the CoreSetting contract (L134 in code snippet

22.2)

PoolSetting.sol

35

36

37

38

39

40

41

42

43

function setupLoanConfig(

address _collateralTokenAddress,

uint256 _safeLTV,

uint256 _maxLTV,

uint256 _liqLTV,

uint256 _bountyFeeRate

) external onlyManager {

require(

_safeLTV < _maxLTV && _maxLTV < _liqLTV && _liqLTV < WEI_PERCENT_UNIT,

PUBLIC 84

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

"PoolSetting/invalid-loan-config"

);

IAPHCoreSetting(coreAddress).setupLoanConfig(

tokenAddress,

_collateralTokenAddress,

_safeLTV,

_maxLTV,

_liqLTV,

_bountyFeeRate

);

emit SetLoanConfig(

msg.sender,

_collateralTokenAddress,

_safeLTV,

_maxLTV,

_liqLTV,

_bountyFeeRate

);

}

Listing 22.1 The setupLoanConfig function of the PoolSetting contract

CoreSetting.sol

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

function setupLoanConfig(

address _borrowTokenAddress,

address _collateralTokenAddress,

uint256 _safeLTV,

uint256 _maxLTV,

uint256 _liquidationLTV,

uint256 _bountyFeeRate

) external {

require(

poolToAsset[msg.sender] != address(0) || msg.sender == manager,

"CoreSetting/permission-denied-for-setup-loan-config"

);

require(

_borrowTokenAddress != _collateralTokenAddress &&

assetToPool[_borrowTokenAddress] != address(0) &&

assetToPool[_collateralTokenAddress] != address(0),

"CoreSetting/_borrowTokenAddress-is-not-registered-yet"

);

LoanConfig memory configOld =

loanConfigs[_borrowTokenAddress][_collateralTokenAddress];

LoanConfig storage config =

loanConfigs[_borrowTokenAddress][_collateralTokenAddress];

config.borrowTokenAddress = _borrowTokenAddress;

PUBLIC 85

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

config.collateralTokenAddress = _collateralTokenAddress;

config.safeLTV = _safeLTV;

config.maxLTV = _maxLTV;

config.liquidationLTV = _liquidationLTV;

config.bountyFeeRate = _bountyFeeRate;

emit SetupLoanConfig(

msg.sender,

_borrowTokenAddress,

_collateralTokenAddress,

configOld.safeLTV,

configOld.maxLTV,

configOld.liquidationLTV,

configOld.bountyFeeRate,

config.safeLTV,

config.maxLTV,

config.liquidationLTV,

config.bountyFeeRate

);

}

Listing 22.2 The setupLoanConfig function of the CoreSetting contract

Recommendations

We recommend adding sanitization checks on all the associated input parameters on both the

setupLoanConfig functions of the PoolSetting and CoreSetting contracts.

Be sure to validate the value of the _bountyFeeRate parameter not to be greater than the
WEI_PERCENT_UNIT parameter or any appropriate value (refer to issue no. 21 for more details).

And, the relationship between LTV parameters should be according to this formula:

_safeLTV < _maxLTV < _liquidationLTV < WEI_PERCENT_UNIT

Reassessment

The FWX team fixed this issue by adding sanitization checks on all the associated input parameters as

recommended.

PUBLIC 86

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 23 Underflow On Getting More Loan

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 224 and 228

Detailed Issue

We found an integer underflow on the _borrow function of the CoreBorrowing contract. The underflow occurs

(in L224 and L228 in the code snippet below) when a borrower sends a transaction to borrow more on an

existing loan that is overdue.

More specifically, on the overdue loan, the loan.rolloverTimestamp would be less than the current

block.timestamp. Subsequently, the underflow error would occur when the function computes the expression

loan.rolloverTimestamp - block.timestamp.

CoreBorrowing.sol

165

166

167

168

169

170

171

172

173

174

199

200

201

202

203

204

205

206

function _borrow(

uint256 loanId,

uint256 nftId,

uint256 borrowAmount,

address borrowTokenAddress,

uint256 collateralSentAmount,

address collateralTokenAddress,

uint256 newOwedPerDay,

uint256 interestRate

) internal returns (Loan memory) {

// (...SNIPPED...)

if (numberArray[0] == 1) {

loan.borrowTokenAddress = borrowTokenAddress;

loan.collateralTokenAddress = collateralTokenAddress;

loan.owedPerDay = newOwedPerDay;

loan.lastSettleTimestamp = uint64(block.timestamp);

loanExt.initialBorrowTokenPrice = _queryRateUSD(borrowTokenAddress);

loanExt.initialCollateralTokenPrice =

PUBLIC 87

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

282

_queryRateUSD(collateralTokenAddress);

loanExt.active = true;

loanExt.startTimestamp = uint64(block.timestamp);

poolStat.borrowInterestOwedPerDay += newOwedPerDay;

} else {

require(loanExt.active == true, "CoreBorrowing/loan-is-closed");

require(

loan.collateralTokenAddress == collateralTokenAddress,

"CoreBorrowing/collateral-token-not-matched"

);

_settleBorrowInterest(loan);

numberArray[1] = loan.owedPerDay;

// owedPerDay = [(r1/365 * (ld-now) * p1) + (r2/365 * ld * p2) + (r2/365

* (leftover) * p1)] / ld

loan.owedPerDay =

((loan.owedPerDay * (loan.rolloverTimestamp - block.timestamp)) +

(newOwedPerDay * loanDuration) +

((interestRate *

loan.borrowAmount *

(loanDuration - ((loan.rolloverTimestamp -

block.timestamp)))) /

(365 * WEI_PERCENT_UNIT))) /

loanDuration;

poolStat.borrowInterestOwedPerDay =

poolStat.borrowInterestOwedPerDay +

loan.owedPerDay -

numberArray[1];

}

// (...SNIPPED...)

}

Listing 23.1 The _borrow function of the CoreBorrowing contract

Recommendations

We recommend handling (or refusing) the case when overdue loans are requested to get more loan to

remediate the underflow error.

PUBLIC 88

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

The FWX team fixed this issue by revising the _borrow function like L265 - 267 in the code snippet below. In

the case of the overdue loan, the _borrow function will roll over the loan before recalculating borrowing

parameters.

CoreBorrowing.sol

204

205

206

207

208

209

210

211

212

213

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

function _borrow(

uint256 loanId,

uint256 nftId,

uint256 borrowAmount,

address borrowTokenAddress,

uint256 collateralSentAmount,

address collateralTokenAddress,

uint256 newOwedPerDay,

uint256 interestRate

) internal returns (Loan memory) {

// (...SNIPPED...)

if (numberArray[0] == 1) {

loan.borrowTokenAddress = borrowTokenAddress;

loan.collateralTokenAddress = collateralTokenAddress;

loan.owedPerDay = newOwedPerDay;

loan.lastSettleTimestamp = uint64(block.timestamp);

loanExt.initialBorrowTokenPrice = _queryRateUSD(borrowTokenAddress);

loanExt.initialCollateralTokenPrice =

_queryRateUSD(collateralTokenAddress);

loanExt.active = true;

loanExt.startTimestamp = uint64(block.timestamp);

poolStat.borrowInterestOwedPerDay += newOwedPerDay;

} else {

require(loanExt.active == true, "CoreBorrowing/loan-is-closed");

require(

loan.collateralTokenAddress == collateralTokenAddress,

"CoreBorrowing/collateral-token-not-matched"

);

_settleBorrowInterest(loan);

if (loan.rolloverTimestamp < block.timestamp) {

_rollover(loanId, nftId, msg.sender);

}

numberArray[1] = loan.owedPerDay;

// owedPerDay = [(r1/365 * (ld-now) * p1) + (r2/365 * ld * p2) + (r2/365

PUBLIC 89

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

271

272

273

274

275

276

277

278

279

280

281

282

283

284

330

* (leftover) * p1)] / ld

loan.owedPerDay =

((loan.owedPerDay * (loan.rolloverTimestamp - block.timestamp)) +

(newOwedPerDay * loanDuration) +

((interestRate *

loan.borrowAmount *

(loanDuration - ((loan.rolloverTimestamp -

block.timestamp)))) /

(365 * WEI_PERCENT_UNIT))) /

loanDuration;

poolStat.borrowInterestOwedPerDay =

poolStat.borrowInterestOwedPerDay +

loan.owedPerDay -

numberArray[1];

}

// (...SNIPPED...)

}

Listing 23.2 The revised _borrow function

PUBLIC 90

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 24 Incorrect Calculations For Loan Repayment

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 284 - 380

Detailed Issue

We found some incorrect calculations for loan repayment on the _repay function (code snippet below) of the

CoreBorrowing contract. There are three incorrect calculation issues as follows.

1. Underflow on calculating the borrowPaid (L344)
This issue occurs if:

(repayAmount > loan.interestOwed) and
(repayAmount < loan.minInterest) and
(loan.minInterest > loan.interestOwed)

Then:

interestPaid = max(loan.minInterest, loan.interestOwed)
= loan.minInterest

Underflow occurs during calculating:

borrowPaid = repayAmount - interestPaid
= repayAmount - loan.minInterest
=> underflow error (since repayAmount < loan.minInterest)

To understand this issue easier, let’s say we have the following parameters:

repayAmount = 500, loan.interestOwed = 300, and loan.minInterest = 600

Thus:

interestPaid = max(loan.minInterest, loan.interestOwed)
= max(600, 300)
= 600

borrowPaid = repayAmount - interestPaid
= 500 - 600 (underflow error)

PUBLIC 91

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

2. The calculated minInterest always returns zero (L352 - 356)
The result of the loan.minInterest always returns zero (0) after processing the if - else statement

in L352 - 356.

3. Underflow on calculating the interestOwed (L358)
This issue occurs if:

loan.minInterest > loan.interestOwed
Then:

interestPaid = max(loan.minInterest, loan.interestOwed)

= loan.minInterest

Underflow occurs during calculating:

loan.interestOwed -= interestPaid
-= loan.minInterest
=> underflow error (since loan.interestOwed < loan.minInterest)

CoreBorrowing.sol

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

function _repay(

uint256 loanId,

uint256 nftId,

uint256 repayAmount,

bool isOnlyInterest

)

internal

returns (

uint256 borrowPaid,

uint256 interestPaid,

bool isLoanClosed

)

{

Loan storage loan = loans[nftId][loanId];

PoolStat storage poolStat = poolStats[assetToPool[loan.borrowTokenAddress]];

require(loanExts[nftId][loanId].active == true,

"CoreBorrowing/loan-is-closed");

_settleBorrowInterest(loan);

uint256 collateralAmountWithdraw = 0;

// pay only interest

if (isOnlyInterest || repayAmount <= loan.interestOwed) {

interestPaid = Math.min(repayAmount, loan.interestOwed);

loan.interestOwed -= interestPaid;

loan.interestPaid += interestPaid;

PUBLIC 92

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

if (loan.minInterest > interestPaid) {

loan.minInterest -= interestPaid;

} else {

loan.minInterest = 0;

}

poolStat.totalInterestPaid += interestPaid;

} else {

interestPaid = Math.max(loan.minInterest, loan.interestOwed);

if (repayAmount >= (loan.borrowAmount + interestPaid)) {

// close loan

poolStat.totalInterestPaid += interestPaid;

poolStat.totalBorrowAmount -= loan.borrowAmount;

poolStat.borrowInterestOwedPerDay -= loan.owedPerDay;

collateralAmountWithdraw = loan.collateralAmount;

totalCollateralHold[loan.collateralTokenAddress] -=

collateralAmountWithdraw;

borrowPaid = loan.borrowAmount;

loan.minInterest = 0;

loan.interestOwed = 0;

loan.owedPerDay = 0;

loan.borrowAmount = 0;

loan.collateralAmount = 0;

loan.interestPaid += interestPaid;

isLoanClosed = true;

loanExts[nftId][loanId].active = false;

} else {

// pay int and some of principal

uint256 oldBorrowAmount = loan.borrowAmount;

loan.interestPaid += interestPaid;

borrowPaid = repayAmount - interestPaid;

loan.borrowAmount -= borrowPaid;

poolStat.borrowInterestOwedPerDay -= loan.owedPerDay;

loan.owedPerDay = (loan.owedPerDay * loan.borrowAmount) /

oldBorrowAmount;

poolStat.borrowInterestOwedPerDay += loan.owedPerDay;

if (loan.minInterest > loan.interestOwed) {

loan.minInterest -= interestPaid;

} else {

loan.minInterest = 0;

}

loan.interestOwed -= interestPaid;

PUBLIC 93

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

poolStat.totalInterestPaid += interestPaid;

poolStat.totalBorrowAmount -= borrowPaid;

}

}

IInterestVault(IAPHPool(assetToPool[loan.borrowTokenAddress]).interestVaultAddre

ss())

.settleInterest(

(interestPaid * (WEI_PERCENT_UNIT - feeSpread)) / WEI_PERCENT_UNIT,

(interestPaid * feeSpread) / WEI_PERCENT_UNIT,

0

);

emit Repay(

tx.origin,

nftId,

loanId,

collateralAmountWithdraw > 0,

borrowPaid,

interestPaid,

collateralAmountWithdraw

);

}

Listing 24.1 The _repay function of the CoreBorrowing contract

Recommendations

We recommend revising the associated _repay function to correct all issues and performing the unit testing

on all possible edge cases to make sure that the function would perform correctly in accordance with its

functional design.

Reassessment

The FWX team fixed this issue by revising the _repay function as the code snippet below.

CoreBorrowing.sol

332

333

334

335

336

337

338

339

340

function _repay(

uint256 loanId,

uint256 nftId,

uint256 repayAmount,

bool isOnlyInterest

)

internal

returns (

uint256 borrowPaid,

PUBLIC 94

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

uint256 interestPaid,

bool isLoanClosed

)

{

Loan storage loan = loans[nftId][loanId];

PoolStat storage poolStat = poolStats[assetToPool[loan.borrowTokenAddress]];

require(loanExts[nftId][loanId].active == true,

"CoreBorrowing/loan-is-closed");

_settleBorrowInterest(loan);

uint256 collateralAmountWithdraw = 0;

// pay only interest

if (isOnlyInterest || repayAmount <= loan.interestOwed) {

interestPaid = MathUpgradeable.min(repayAmount, loan.interestOwed);

loan.interestOwed -= interestPaid;

loan.interestPaid += interestPaid;

if (loan.minInterest > interestPaid) {

loan.minInterest -= interestPaid;

} else {

loan.minInterest = 0;

}

poolStat.totalInterestPaid += interestPaid;

} else {

interestPaid = MathUpgradeable.max(loan.minInterest, loan.interestOwed);

if (repayAmount >= (loan.borrowAmount + interestPaid)) {

// close loan

poolStat.totalInterestPaid += interestPaid;

poolStat.totalBorrowAmount -= loan.borrowAmount;

poolStat.borrowInterestOwedPerDay -= loan.owedPerDay;

collateralAmountWithdraw = loan.collateralAmount;

totalCollateralHold[loan.collateralTokenAddress] -=

collateralAmountWithdraw;

borrowPaid = loan.borrowAmount;

loan.minInterest = 0;

loan.interestOwed = 0;

loan.owedPerDay = 0;

loan.borrowAmount = 0;

loan.collateralAmount = 0;

loan.interestPaid += interestPaid;

isLoanClosed = true;

loanExts[nftId][loanId].active = false;

} else {

PUBLIC 95

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

// pay int and some of principal

uint256 oldBorrowAmount = loan.borrowAmount;

interestPaid = MathUpgradeable.min(interestPaid, loan.interestOwed);

loan.interestPaid += interestPaid;

borrowPaid = MathUpgradeable.min(repayAmount - interestPaid,

loan.borrowAmount);

loan.borrowAmount -= borrowPaid;

poolStat.borrowInterestOwedPerDay -= loan.owedPerDay;

// set new owedPerDat

loan.owedPerDay = (loan.owedPerDay * loan.borrowAmount) /

oldBorrowAmount;

poolStat.borrowInterestOwedPerDay += loan.owedPerDay;

if (loan.minInterest > loan.interestOwed) {

loan.minInterest -= interestPaid;

} else {

loan.minInterest = 0;

}

loan.interestOwed -= interestPaid;

poolStat.totalInterestPaid += interestPaid;

poolStat.totalBorrowAmount -= borrowPaid;

}

}

IInterestVault(IAPHPool(assetToPool[loan.borrowTokenAddress]).interestVaultAddre

ss())

.settleInterest(

(interestPaid * (WEI_PERCENT_UNIT - feeSpread)) / WEI_PERCENT_UNIT,

(interestPaid * feeSpread) / WEI_PERCENT_UNIT,

0

);

emit Repay(

msg.sender,

nftId,

loanId,

collateralAmountWithdraw > 0,

borrowPaid,

interestPaid,

collateralAmountWithdraw

);

}

Listing 24.2 The revised _repay function

PUBLIC 96

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 25 Unchecking Price Feeding System’s Pause

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/utils/PriceFeed.sol

Locations PriceFeed.sol L: 148 - 150

Detailed Issue

The queryRateUSD function (code snippet 25.1) returns the token rate in USD without checking the price

feeding system’s pause status (the state variable globalPricingPaused). Therefore, the function would

operate normally even if a protocol manager pauses the price feeding system.

PriceFeed.sol

148

149

150

function queryRateUSD(address token) external view returns (uint256 rate) {

rate = _queryRateUSD(token);

}

Listing 25.1 The queryRateUSD function that does not check
the price feeding system’s pause status

Recommendations

We recommend improving the queryRateUSD function like the below code snippet by checking the state

variable globalPricingPaused (L149).

PriceFeed.sol

148

149

150

151

function queryRateUSD(address token) external view returns (uint256 rate) {

require(!globalPricingPaused, "PriceFeed/pricing-is-paused");

rate = _queryRateUSD(token);

}

Listing 25.2 The improved queryRateUSD function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 97

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

The FWX team fixed this issue by checking the price feeding system’s pause status as suggested.

PUBLIC 98

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 26 Inaccurate Interest Calculation For Liquidated Loan

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 479 - 573

Detailed Issue

The _liquidate function would liquidate a loan in the normal condition (L527 - 535 in the code snippet below)

if the maximum swappable amount is more than the sum of the loan’s borrowing amount and the loan’s

borrowing interest (numberArray[2] > loan.borrowAmount + loan.interestOwed) in L526.

However, we found that the _liquidate function does not cover the case that the loan’s minimum interest

(loan.minInterest) is more than the loan’s borrowing interest (loan.interestOwed). In that case, the loan’s

minimum interest (loan.minInterest) should be used in the condition check instead.

If not, the calculation of the borrowing token amount used for repaying the liquidated loan would be less than

the expected amount.

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

520

521

522

523

524

525

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

PUBLIC 99

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

573

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

// (...SNIPPED...)

}

Listing 26.1 The _liquidate function

Recommendations

We recommend updating the _liquidate function like L526 and L527 in the code snippet below to get the

accurate loan’s interest.

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

520

521

522

523

524

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

PUBLIC 100

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

573

if (numberArray[2] > loan.borrowAmount + Math.max(loan.interestOwed,

loan.minInterest)) {

numberArray[2] = loan.borrowAmount + Math.max(loan.interestOwed,

loan.minInterest);

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

// (...SNIPPED...)

}

Listing 26.2 The improved _liquidate function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our suggestion.

PUBLIC 101

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 27 Potential Loss Of Collateral Asset For Loan Borrower

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 479 - 573

Detailed Issue

In L549 in the code snippet below, the _liquidate function invokes the _repay function by passing the

borrowTokenAmountSwap as an argument. The borrowTokenAmountSwap is a maximum repayment

amount used to calculate the returned parameters repayBorrow and repayInterest.

We found that if the maximum repayment amount (borrowTokenAmountSwap) is more than the loan’s total

debt (i.e., borrowed asset + interest), the sum of the calculated repayBorrow and repayInterest would be less

than the maximum repayment amount (borrowTokenAmountSwap).

In other words, there will be some borrowing tokens left unused and this unused amount will be locked in the

APHCore contract, resulting in the loss of some part of a collateral asset for the loan borrower.

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

515

516

517

518

519

520

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

address[] memory path_data = new address[](2);

path_data[0] = loan.collateralTokenAddress;

path_data[1] = loan.borrowTokenAddress;

uint256[] memory amounts;

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

PUBLIC 102

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

573

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

if (loanExts[nftId][loanId].active == true) {

// TODO (future work): handle with ciritical condition, this part

must add pool subsidisation for pool loss

// Ciritical condition, protocol loss

// transfer int or sth else to pool

} else {

bountyReward = (leftOverCollateral * loanConfig.bountyFeeRate) /

WEI_PERCENT_UNIT;

leftOverCollateral -= bountyReward;

}

// (...SNIPPED...)

}

Listing 27.1 The _liquidate function

PUBLIC 103

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the _liquidate function like the code snippet below. The function would swap the

leftover borrowing token back to the collateral token (L553 - 566). Then, the function would merge the

swapped collateral token with the leftOverCollateral variable (L569).

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

address[] memory path_data = new address[](2);

path_data[0] = loan.collateralTokenAddress;

path_data[1] = loan.borrowTokenAddress;

uint256[] memory amounts;

numberArray[2] = IPriceFeed(priceFeedAddress).queryReturn(

loan.collateralTokenAddress,

loan.borrowTokenAddress,

loan.collateralAmount

);

if (numberArray[2] > loan.borrowAmount + loan.interestOwed) {

numberArray[2] = loan.borrowAmount + loan.interestOwed;

// Normal condition, leftover collateral is exists

amounts = IRouter(routerAddress).swapTokensForExactTokens(

numberArray[2], // // amountOut

loan.collateralAmount, // // amountInMax

path_data,

address(this),

1 hours + block.timestamp

);

} else {

amounts = IRouter(routerAddress).swapExactTokensForTokens(

loan.collateralAmount, // // amountIn

0, // // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

}

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

PUBLIC 104

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

594

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

uint256 leftoverBorrowToken = borrowTokenAmountSwap - (repayBorrow +

repayInterest);

if (leftoverBorrowToken > 0) {

// Swap the leftover borrowing token back to the collateral

path_data[0] = loan.borrowTokenAddress;

path_data[1] = loan.collateralTokenAddress;

delete amounts;

amounts = IRouter(routerAddress).swapExactTokensForTokens(

leftoverBorrowToken, // amountIn

0, // amountOutMin

path_data,

address(this),

1 hours + block.timestamp

);

uint256 collateralAmountSwap = amounts[amounts.length - 1];

// Merge the swapped collateral with the leftOverCollateral

leftOverCollateral += collateralAmountSwap;

}

if (loanExts[nftId][loanId].active == true) {

// TODO (future work): handle with ciritical condition, this part

must add pool subsidisation for pool loss

// Ciritical condition, protocol loss

// transfer int or sth else to pool

} else {

bountyReward = (leftOverCollateral * loanConfig.bountyFeeRate) /

WEI_PERCENT_UNIT;

leftOverCollateral -= bountyReward;

}

// (...SNIPPED...)

}

Listing 27.2 The improved _liquidate function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 105

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

This issue was fixed by the FWX team according to our suggestion.

PUBLIC 106

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 28 Potential Lock Of Ethers

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/pool/PoolLending.sol

./contracts/src/pool/PoolBorrowing.sol

./contracts/src/core/CoreBorrowing.sol

Locations

PoolLending.sol L: 43 - 59

PoolBorrowing.sol L: 16 - 37

CoreBorrowing.sol L: 46 - 87 and 94 - 117

Detailed Issue

The following are payable functions that accept (native) Ethers sent from a user.

● deposit function (L43 - 59 in PoolLending.sol)

● borrow function (L16 - 37 in PoolBorrowing.sol)

● repay function (L46 - 87 in CoreBorrowing.sol)

● adjustCollateral function (L94 - 117 in CoreBorrowing.sol)

We found that the Ethers sent from a user to the above functions can be locked forever in the APHPool or

APHCore contract if the interacting pool does not support Ether.

Code snippet 28.1 presents the deposit, one of the affected functions. The function allows a user to deposit a

supported ERC-20 token to a single lending pool. For example, we can deposit a USDT token to the USDT

lending pool. In this case, the USDT lending pool would not support depositing any other tokens, including

Ether.

However, if a user mistakenly sends the (native) Ethers to the USDT lending pool, the pool’s deposit function

does not have a mechanism to reject the request. As a result, the deposited Ethers will be locked in the pool

forever.

PUBLIC 107

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolLending.sol

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

function deposit(uint256 nftId, uint256 depositAmount)

external

payable

checkRank(nftId)

nonReentrant

whenFuncNotPaused(msg.sig)

settleForwInterest

returns (

uint256 mintedP,

uint256 mintedItp,

uint256 mintedIfp

)

{

nftId = _getUsableToken(nftId);

_transferFromIn(tx.origin, address(this), tokenAddress, depositAmount);

(mintedP, mintedItp, mintedIfp) = _deposit(tx.origin, nftId, depositAmount);

}

Listing 28.1 The deposit, one of the affected functions

Recommendations

We recommend adding the Ether rejection mechanism to the affected functions as follows.

● L56 - 58 in code snippet 28.2 for the deposit function
● L23 - 25 in code snippet 28.3 for the borrow function
● L58 - 60 in code snippet 28.4 for the repay function
● L100 - 105 in code snippet 28.5 for the adjustCollateral function

The rejection mechanism would accept Ethers sent from a user only if the pool supports it.

PoolLending.sol

43

44

45

46

47

48

49

50

51

52

53

54

55

function deposit(uint256 nftId, uint256 depositAmount)

external

payable

checkRank(nftId)

nonReentrant

whenFuncNotPaused(msg.sig)

settleForwInterest

returns (

uint256 mintedP,

uint256 mintedItp,

uint256 mintedIfp

)

{

PUBLIC 108

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

56

57

58

59

60

61

62

63

if (tokenAddress != wethAddress && msg.value != 0) {

revert("PoolLending/no-support-transferring-ether-in");

}

nftId = _getUsableToken(nftId);

_transferFromIn(tx.origin, address(this), tokenAddress, depositAmount);

(mintedP, mintedItp, mintedIfp) = _deposit(tx.origin, nftId, depositAmount);

}

Listing 28.2 The improved deposit function

PoolBorrowing.sol

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

function borrow(

uint256 loanId,

uint256 nftId,

uint256 borrowAmount,

uint256 collateralSentAmount,

address collateralTokenAddress

) external payable nonReentrant whenFuncNotPaused(msg.sig) returns

(CoreBase.Loan memory) {

if (collateralTokenAddress != wethAddress && msg.value != 0) {

revert("PoolBorrowing/no-support-transferring-ether-in");

}

nftId = _getUsableToken(nftId);

if (collateralSentAmount != 0) {

_transferFromIn(tx.origin, coreAddress, collateralTokenAddress,

collateralSentAmount);

}

CoreBase.Loan memory loan = _borrow(

loanId,

nftId,

borrowAmount,

collateralSentAmount,

collateralTokenAddress

);

_transferOut(tx.origin, tokenAddress, borrowAmount);

return loan;

}

Listing 28.3 The improved borrow function

PUBLIC 109

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

CoreBorrowing.sol

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

91

function repay(

uint256 loanId,

uint256 nftId,

uint256 repayAmount,

bool isOnlyInterest

)

external

payable

whenFuncNotPaused(msg.sig)

nonReentrant

returns (uint256 borrowPaid, uint256 interestPaid)

{

if (loan.borrowTokenAddress != wethAddress && msg.value != 0) {

revert("CoreBorrowing/no-support-transferring-ether-in");

}

// (...SNIPPED...)

}

Listing 28.4 The improved repay function

CoreBorrowing.sol

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

function adjustCollateral(

uint256 loanId,

uint256 nftId,

uint256 collateralAdjustAmount,

bool isAdd

) external payable whenFuncNotPaused(msg.sig) nonReentrant returns (Loan memory)

{

if (

(loan.collateralTokenAddress != wethAddress || !isAdd)

&& msg.value != 0

) {

revert("CoreBorrowing/no-support-transferring-ether-in");

}

nftId = _getUsableToken(nftId);

Loan storage loan = loans[nftId][loanId];

Loan memory loanData = _adjustCollateral(loanId, nftId,

collateralAdjustAmount, isAdd);

if (isAdd) {

// add colla to core

_transferFromIn(

tx.origin,

address(this),

PUBLIC 110

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

116

117

118

119

120

121

122

123

124

loan.collateralTokenAddress,

collateralAdjustAmount

);

} else {

// withdraw colla to user

_transferOut(tx.origin, loan.collateralTokenAddress,

collateralAdjustAmount);

}

return loanData;

}

Listing 28.5 The improved adjustCollateral function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue by adding the Ether rejection mechanism according to our suggestion.

PUBLIC 111

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 29 Incorrectly Updating Membership NFT Rank

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/stakepool/StakePool.sol

Locations StakePool.sol L: 259 - 270

Detailed Issue

The _updateNFTRank function updates a Membership NFT rank for a user (Forward staker or unstaker) as

shown in the code snippet below. We found some flaws in the function implementation as follows.

1. The _updateNFTRank function gets a user’s rank by passing the msg.sender to the getRank
function (L261) which is incorrect because the getRank function requires the staking pool
address, not a user address.

2. The _updateNFTRank function does not check the first rank (L263). Therefore, a staker who

stakes Forward tokens in the first tier would not get a ranking update.

3. The _updateNFTRank function would update the user’s rank even if the rank is unchanged
(L265 - 266).

StakePool.sol

259

260

261

262

263

264

265

266

267

268

269

270

function _updateNFTRank(uint256 nftId) internal returns (uint8 currentRank) {

uint256 stakeBalance = stakeInfos[nftId].stakeBalance;

currentRank = IMembership(membershipAddress).getRank(msg.sender, nftId);

for (uint8 i = rankLen - 1; i > 0; i--) {

if (stakeBalance >= rankInfos[i].minimumStakeAmount) {

currentRank = i;

IMembership(membershipAddress).updateRank(nftId, currentRank);

return currentRank;

}

}

}

Listing 29.1 The _updateNFTRank function

PUBLIC 112

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the _updateNFTRank function as the code snippet below.

StakePool.sol

259

260

261

262

263

264

265

266

267

268

269

270

271

272

function _updateNFTRank(uint256 nftId) internal returns (uint8 currentRank) {

uint256 stakeBalance = stakeInfos[nftId].stakeBalance;

currentRank = IMembership(membershipAddress).getRank(address(this), nftId);

for (uint8 i = rankLen - 1; i >= 0; i--) {

if (stakeBalance >= rankInfos[i].minimumStakeAmount) {

if (currentRank != i) {

currentRank = i;

IMembership(membershipAddress).updateRank(nftId, currentRank);

}

return currentRank;

}

}

}

Listing 29.2 The improved _updateNFTRank function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed according to the suggested code.

PUBLIC 113

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 30 Possibly Incorrect Calculation For Lending Forward Interest

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/pool/APHPool.sol

./contracts/src/pool/PoolBaseFunc.sol

Locations
APHPool.sol L: 12 - 39

PoolBaseFunc.sol: L: 77 - 100

Detailed Issue

The APHPool contract defines the state variable BLOCK_TIME with a hardcoded value (3) in L32 in the

initialize function as shown in code snippet 30.1. The BLOCK_TIME is used to calculate the lending Forward

interest in the _getNextLendingForwInterest function (L95 in code snippet 30.2).

Since the BLOCK_TIME is a hardcoded value, this value might not represent the (real) block time of the

blockchain network that the contract would be deployed on, affecting the incorrect calculation for the lending

Forward interest.

APHPool.sol

12

13

14

15

16

32

39

function initialize(

address _tokenAddress,

address _coreAddress,

address _membershipAddress

) external virtual initializer {

// (...SNIPPED...)

BLOCK_TIME = 3;

// (...SNIPPED...)

}

Listing 30.1 The initialize function

PUBLIC 114

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

PoolBaseFunc.sol

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

function _getNextLendingForwInterest(uint256 newDepositAmount)

internal

view

returns (uint256 interestRate)

{

(uint256 rate, uint256 precision) =

IPriceFeed(IAPHCore(coreAddress).priceFeedAddress())

.queryRate(tokenAddress, forwAddress);

uint256 ifpPrice = _getInterestForwPrice();

uint256 newIfpTokenSupply = ifpTokenTotalSupply +

((newDepositAmount * WEI_UNIT) / ifpPrice);

if (newIfpTokenSupply == 0) {

interestRate = 0;

} else {

interestRate =

(IAPHCore(coreAddress).forwDisPerBlock(address(this)) *

(365 days / BLOCK_TIME) *

rate *

WEI_UNIT) /

(newIfpTokenSupply * precision);

}

}

Listing 30.2 The _getNextLendingForwInterest function

Recommendations

We recommend updating the initialize function to configure the BLOCK_TIME with an inputted parameter

(L16) during a contract initialization process like L33 - 34 in the code snippet below.

APHPool.sol

12

13

14

15

16

17

33

34

function initialize(

address _tokenAddress,

address _coreAddress,

address _membershipAddress,

uint256 _blockTime

) external virtual initializer {

// (...SNIPPED...)

require(_blockTime != 0, "_blockTime cannot be zero");

BLOCK_TIME = _blockTime;

PUBLIC 115

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

41

// (...SNIPPED...)

}

Listing 30.3 The improved initialize function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed as per the recommended code.

PUBLIC 116

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 31 Lack Of Stale Price Detection Mechanism

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/utils/PriceFeed.sol

Locations PriceFeed.sol L: 141 - 146

Detailed Issue

The _queryRateUSD function queries for a token price from the deprecated Chainlink’s latestAnswer function

(L144 in the code snippet below). Even though the current implementation of the _queryRateUSD function is

performing correctly, the latestAnswer function cannot report how long the price has previously been updated

by an oracle network. In other words, we cannot detect the stale price using the latestAnswer function.

When the protocol utilizes the stale price, as a result, the protocol’s assets and users’ assets can be at risk

unexpectedly.

PriceFeed.sol

141

142

143

144

145

146

function _queryRateUSD(address token) internal view returns (uint256 rate) {

require(pricesFeeds[token] != address(0), "PriceFeed/unsupported-address");

AggregatorV2V3Interface _Feed = AggregatorV2V3Interface(pricesFeeds[token]);

rate = uint256(_Feed.latestAnswer());

require(rate != 0, "PriceFeed/price-error");

}

Listing 31.1 The _queryRateUSD function that
utilizes the deprecated Chainlink’s function, latestAnswer

PUBLIC 117

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend employing the recommended Chainlink’s latestRoundData function as shown in L144 in the

code snippet below. With the latestRoundData function, we can implement the stale price detection

mechanism (L146 - 149), enhancing the reliability of the price data consumed by the protocol.

PriceFeed.sol

141

142

143

144

145

146

147

148

149

150

function _queryRateUSD(address token) internal view returns (uint256 rate) {

require(pricesFeeds[token] != address(0), "PriceFeed/unsupported-address");

AggregatorV2V3Interface _Feed = AggregatorV2V3Interface(pricesFeeds[token]);

(, int256 answer, , uint256 updatedAt,) = _Feed.latestRoundData();

rate = uint256(answer);

require(

block.timestamp - updatedAt < stalePeriod,

"PriceFeed/price-is-stale"

);

}

Listing 31.2 The improved _queryRateUSD function that
employs the recommended Chainlink’s function, latestRoundData

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue by adopting our recommended code.

PUBLIC 118

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 32 Usage Of Unsafe Functions

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/pool/InterestVault.sol

./contracts/src/utils/AssetHandler.sol

./contracts/src/utils/Vault.sol

./contracts/src/nft/Membership.sol

Locations

InterestVault.sol L: 53, 128, 129, and 161

 AssetHandler.sol L: 28, 30, 44, 47, 60, and 63

Vault.sol L: 22 and 26

Membership.sol L: 107

Detailed Issue

We found some usage of unsafe functions including:

● Unsafe ERC20’s transfer function
○ In _withdrawActualProfit function (L161 in InterestVault.sol)

○ In _transferFromIn function (L28 in AssetHandler.sol)

○ In _transferOut function (L60 and L63 in AssetHandler.sol)

● Unsafe ERC20’s transferFrom function
○ In _transferFromIn function (L30 in AssetHandler.sol)

○ In _transferFromOut function (L44 and L47 in AssetHandler.sol)

● Unsafe ERC20’s approve function
○ In approveInterestVault function (L53 in InterestVault.sol)

○ In _ownerApprove function (L128 - 129 in InterestVault.sol)

○ In _ownerApprove function (L22 in Vault.sol)

○ In approveInterestVault function (L26 in Vault.sol)

● Unsafe ERC721’s _mint function
○ In mint function (L107 in Membership.sol)

PUBLIC 119

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

The use of above unsafe functions could lead to unexpected token transfer, approval, or minting errors.

Recommendations

We recommend applying the safer functions as follows.

● ERC20’s transfer function -> SafeERC20’s safeTransfer function
● ERC20’s transferFrom function -> SafeERC20’s safeTransferFrom function
● ERC20’s approve function -> SafeERC20’s safeApprove function
● ERC721’s _mint function -> ERC721’s _safeMint function

Reassessment

The FWX team fixed this issue by applying the recommended safer functions.

PUBLIC 120

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 33 Liquidator May Receive Zero Bounty Reward

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Acknowledged

Associated Files ./contracts/src/core/CoreBorrowing.sol

Locations CoreBorrowing.sol L: 479 - 573

Detailed Issue

We found that the _liquidate function does not handle the case when a liquidated loan cannot be closed a

position as shown in the below code snippet in L551 - 555. This affects a bounty reward for a liquidator to be

zero (0).

CoreBorrowing.sol

479

480

481

482

483

484

485

486

487

545

546

547

548

549

550

551

552

553

554

555

556

function _liquidate(uint256 loanId, uint256 nftId)

internal

returns (

uint256 repayBorrow,

uint256 repayInterest,

uint256 bountyReward,

uint256 leftOverCollateral

)

{

// (...SNIPPED...)

uint256 borrowTokenAmountSwap = amounts[amounts.length - 1];

leftOverCollateral = loan.collateralAmount - amounts[0];

(repayBorrow, repayInterest,) = _repay(loanId, nftId,

borrowTokenAmountSwap, false);

if (loanExts[nftId][loanId].active == true) {

// TODO (future work): handle with ciritical condition, this part

must add pool subsidisation for pool loss

// Ciritical condition, protocol loss

// transfer int or sth else to pool

} else {

bountyReward = (leftOverCollateral * loanConfig.bountyFeeRate) /

WEI_PERCENT_UNIT;

PUBLIC 121

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

557

558

573

leftOverCollateral -= bountyReward;

}

// (...SNIPPED...)

}

Listing 33.1 The _liquidate function does not handle the case when a liquidated loan
cannot be closed a position

Recommendations

We recommend updating the _liquidate function to calculate a liquidator’s bounty reward for the associated

case.

Reassessment

The FWX team confirmed that in case the liquidated loan cannot be closed the position, the liquidator would

receive no bounty reward according to the protocol design.

PUBLIC 122

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 34 Inaccurate Calculation For Current LTV

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/APHCore.sol

Locations APHCore.sol L: 107 - 123

Detailed Issue

We found some nuance that can make the getLoanCurrentLTV function (the code snippet below)

inaccurately calculate a current LTV (Loan-To-Value) for a given loan.

This nuance happens when the loan’s minimum interest (loan.minInterest) is more than the loan’s settled

interest (loan.interestOwed) but the unsettled interest is more than the loan’s minimum interest

(loan.minInterest). This leads to an inaccurate LTV whose value is more than the real value.

APHCore.sol

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

function getLoanCurrentLTV(uint256 loanId, uint256 nftId) external view returns

(uint256 ltv) {

Loan memory loan = loans[nftId][loanId];

(uint256 rate, uint256 precision) = IPriceFeed(priceFeedAddress).queryRate(

loan.collateralTokenAddress,

loan.borrowTokenAddress

);

if (loan.collateralAmount == 0 || rate == 0) {

return 0;

}

ltv = (loan.borrowAmount + Math.max(loan.minInterest, loan.interestOwed));

ltv =

ltv +

((loan.owedPerDay * (block.timestamp -

uint256(loan.lastSettleTimestamp))) / 1 days);

ltv = (ltv * WEI_PERCENT_UNIT * precision) / (loan.collateralAmount * rate);

return ltv;

}

Listing 34.1 The getLoanCurrentLTV function

PUBLIC 123

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the getLoanCurrentLTV function to calculate an accurate LTV like the code snippet

below.

APHCore.sol

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

function getLoanCurrentLTV(uint256 loanId, uint256 nftId) external view returns

(uint256 ltv) {

Loan memory loan = loans[nftId][loanId];

(uint256 rate, uint256 precision) = IPriceFeed(priceFeedAddress).queryRate(

loan.collateralTokenAddress,

loan.borrowTokenAddress

);

if (loan.collateralAmount == 0 || rate == 0) {

return 0;

}

uint256 totalInterest = loan.interestOwed +

((loan.owedPerDay * (block.timestamp - uint256(loan.lastSettleTimestamp)

)) / 1 days);

totalInterest = Math.max(loan.minInterest, totalInterest);

ltv = loan.borrowAmount + totalInterest;

ltv = (ltv * WEI_PERCENT_UNIT * precision) / (loan.collateralAmount * rate);

return ltv;

}

Listing 34.2 The improved getLoanCurrentLTV function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our suggestion.

PUBLIC 124

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 35 Improperly Getting Membership NFT Rank

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files
./contracts/src/stakepool/StakePool.sol

./contracts/src/nft/Membership.sol

Locations
StakePool.sol L: 155 - 157

Membership.sol L: 89 - 91

Detailed Issue

The getMaxLTVBonus function queries for a max LTV bonus of the specified nftId. The function calls the

getRank function to get an NFT rank as presented in L156 in code snippet 35.1. The called getRank function

retrieves a rank from the current (newest) staking pool as shown in L90 in code snippet 35.2.

In an event of changing a staking pool, we found that the ranking results retrieved from the getRank function

will point to the new staking pool. This can affect getting ranks of all stakers who stake Forward tokens on

the old staking pool.

We also consider that using the implicit retrieving of a user’s rank from the newest pool by default like this

can lead to mistakes when maintaining the code in the future.

StakePool.sol

155

156

157

function getMaxLTVBonus(uint256 nftId) external view returns (uint256) {

return rankInfos[IMembership(membershipAddress).getRank(nftId)].maxLTVBonus;

}

Listing 35.1 The getMaxLTVBonus function of the StakePool contract

Membership.sol

89

90

91

function getRank(uint256 tokenId) external view returns (uint8) {

return _poolMembershipRanks[currentPool][tokenId];

}

Listing 35.2 The getRank function of the Membership contract

PUBLIC 125

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the getMaxLTVBonus function like the code snippet below. Another overloaded

getRank function is called instead and we must pass the staking pool address as the first argument (L156).

StakePool.sol

155

156

157

function getMaxLTVBonus(uint256 nftId) external view returns (uint256) {

return rankInfos[IMembership(membershipAddress).getRank(address(this),

nftId)].maxLTVBonus;

}

Listing 35.3 The improved getMaxLTVBonus function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed in accordance with our recommendation.

PUBLIC 126

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 36 Spamming On Minting Membership NFTs

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/nft/Membership.sol

Locations Membership.sol L: 105 - 111

Detailed Issue

We found that the mint function allows any caller to mint a Membership NFT token to any “to” address as

presented in the code snippet below. The mint function opens room for an attacker to make spam NFT

tokens to a specific address.

Membership.sol

105

106

107

108

109

110

111

function mint(address to) external whenNotPaused returns (uint256) {

uint256 tokenId = _tokenIdTracker.current();

_mint(to, tokenId);

_setFirstOwnedDefaultMembership(to, tokenId);

_tokenIdTracker.increment();

return tokenId;

}

Listing 36.1 The mint function

PUBLIC 127

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend updating the mint function as the below code snippet. We add the check (L106 - 109) to

allow only an EOA (Externally Owned Account) user to mint the NFT and only the function caller is able to

mint NFT tokens to itself (L112 and L113).

Membership.sol

105

106

107

108

109

110

111

112

113

114

115

116

function mint() external whenNotPaused returns (uint256) {

require(

msg.sender == tx.origin,

"Membership/do-not-support-smart-contract"

);

uint256 tokenId = _tokenIdTracker.current();

_mint(msg.sender, tokenId);

_setFirstOwnedDefaultMembership(msg.sender, tokenId);

_tokenIdTracker.increment();

return tokenId;

}

Listing 36.2 The improved mint function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team fixed this issue according to our recommendation.

PUBLIC 128

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 37 Rejection On Getting Active Loans

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/APHCore.sol

Locations APHCore.sol L: 80 - 92

Detailed Issue

The getActiveLoans is a view function returning all active loans of the specified nftId as presented in the

code snippet below. Since the number of loans for a specific nftId can grow over time, the getActiveLoans

function can confront a denial-of-service issue if the number of loans is too large.

The root cause of this issue is that the getActiveLoans function iterates over all loans belonging to the

specified nftId (L85) which might take too long for querying on the EVM node, leading to the rejection of the

querying request. Another criterion for the EVM node to reject a query request is the upper-bound gas limit

on the block. Even if the querying request would not have to pay gas but the EVM node still counts out the

gas being used.

APHCore.sol

80

81

82

83

84

85

86

87

88

89

90

91

92

function getActiveLoans(uint256 nftId) external view returns (Loan[] memory) {

uint256 loanIndex = currentLoanIndex[nftId];

Loan[] memory activeLoans = new Loan[](loanIndex);

uint256 count = 0;

for (uint256 i = 1; i <= loanIndex; i++) {

if (loanExts[nftId][i].active) {

activeLoans[count] = loans[nftId][i];

count++;

}

}

return activeLoans;

}

Listing 37.1 The getActiveLoans function

PUBLIC 129

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Furthermore, we also found that the getActiveLoans function would return trailing-zero array elements if

some loans are inactive since the function allocates the returned array as per the number of all loans (L82),

not only active loans.

Recommendations

We recommend re-implementing the getActiveLoans function to address the denial-of-service issue as well

as the trailing-zero array elements.

One possible solution is to apply pagination for data querying, in which the large querying data are divided

into smaller discrete pages.

The code snippet below presents an idea of the pagination version of the getActiveLoans function which

addresses both the denial-of-service and the trailing-zero array elements issues.

APHCore.sol

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

function getActiveLoans(

uint256 nftId,

uint256 cursor,

uint256 resultsPerPage

)

external

view

returns (Loan[] memory activeLoans, uint256 newCursor)

{

uint256 loanLength = currentLoanIndex[nftId];

require(cursor > 0, "APHCore/cursor-must-be-greater-than-zero");

require(cursor <= loanLength, "APHCore/cursor-out-of-range");

require(resultsPerPage > 0, "resultsPerPage-cannot-be-zero");

uint256 index;

uint256 count;

for (index = cursor; index <= loanLength && count < resultsPerPage; index++)

{

if (loanExts[nftId][index].active) {

count++;

}

}

activeLoans = new Loan[](count);

count = 0;

for (index = cursor; index <= loanLength && count < resultsPerPage; index++)

{

if (loanExts[nftId][index].active) {

activeLoans[count] = loans[nftId][index];

count++;

PUBLIC 130

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

108

109

110

111

112

}

}

return (activeLoans, index);

}

Listing 37.2 The improved getActiveLoans function with the pagination

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The FWX team adopted our suggested code to fix this issue.

PUBLIC 131

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 38 Rejection On Getting Pool List

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/src/core/APHCore.sol

Locations APHCore.sol L: 97 - 99

Detailed Issue

The getPoolList is a view function returning all registered pools as presented in the code snippet below.

Since the number of registered pools can grow over time, the getPoolList function can confront a

denial-of-service issue if the number of pools is too large.

The root cause of this issue is that the getPoolList function returns all pools, which might reach the

upper-bound gas limit or take too long for querying on the EVM node, leading to the rejection of the querying

request.

Note: even if the querying request would not have to pay gas but the EVM node still counts out the gas being

used.

APHCore.sol

97

98

99

function getPoolList() external view returns (address[] memory) {

return poolList;

}

Listing 38.1 The getPoolList function

Recommendations

We recommend re-implementing the getPoolList function to address the denial-of-service issue.

One possible solution is to apply pagination for data querying, in which the large querying data are divided

into smaller discrete pages.

PUBLIC 132

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Reassessment

The FWX team confirmed that their pool length would not be more than 100 pools. Therefore, this issue

is considered not to be the case anymore.

PUBLIC 133

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 39 Compiler May Be Susceptible To Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files ./contracts/*.sol

Locations ./contracts/*.sol

Detailed Issue

The Forward protocol’s smart contracts use an outdated Solidity compiler version which may be susceptible

to publicly disclosed vulnerabilities. The currently used compiler version is v0.8.7, which contains the list of

known bugs as the following links:

https://docs.soliditylang.org/en/v0.8.15/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some

attacks further.

An example contract that does not use the latest patch version is shown below.

CoreBase.sol

1

2

3

// SPDX-License-Identifier: GPL-3.0

pragma solidity 0.8.7;

Listing 39.1 Example contract that does not use the latest patch version (v0.8.15)

Recommendations

We recommend using the latest patch version, v0.8.15, which fixes all known bugs.

Reassessment

The FWX team fixed this issue by using the Solidity version v0.8.15.

PUBLIC 134

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

No. 40 Recommended Event Emissions For Transparency

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files

./contracts/src/core/APHCore.sol

./contracts/src/pool/InterestVault.sol

./contracts/src/pool/PoolSetting.sol

./contracts/src/utils/PriceFeed.sol

Locations

APHCore.sol L: 40 - 49

InterestVault.sol L: 27 - 38, 52 - 54, 56 - 58, 60 - 62, 66 - 68, 73 - 75, 82 - 88,

94 - 100, 106 - 108, and 113 - 115

PoolSetting.sol L: 80 - 82

PriceFeed.sol L: 100 - 105 and 107 - 111

Detailed Issue

The following functions change important states but do not emit events, affecting transparency and

traceability for the Forward protocol.

1. settleForwInterest function (L40 - 49 in APHCore.sol)

2. constructor (L27 - 38 in InterestVault.sol)

3. approveInterestVault function (L52 - 54 in InterestVault.sol)

4. setForwAddress function (L56 - 58 in InterestVault.sol)

5. setTokenAddress function (L60 - 62 in InterestVault.sol)

6. setProtocolAddress function (L66 - 68 in InterestVault.sol)

7. ownerApprove function (L73 - 75 in InterestVault.sol)

8. settleInterest function (L82 - 88 in InterestVault.sol)

9. withdrawTokenInterest function (L94 - 100 in InterestVault.sol)

10. withdrawForwInterest function (L106 - 108 in InterestVault.sol)

11. withdrawActualProfit function (L113 - 115 in InterestVault.sol)

12. setWETHHandler function (L80 - 82 in PoolSetting.sol)

13. setPriceFeed function (L100 - 105 in PriceFeed.sol)

14. setDecimals function (L107 - 111 in PriceFeed.sol)

PUBLIC 135

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Recommendations

We recommend emitting relevant events on the associated functions to improve transparency and

traceability for the Forward protocol.

Reassessment

The FWX team fixed this issue by emitting relevant events on all associated functions.

PUBLIC 136

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

Appendix

About Us

Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of

cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract

security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in the areas of private and

public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes

recommendations on smart contracts' security and gas optimization to bring the most benefit to users and

platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 137

FWX - FWX Lending and Borrowing Pools,

and FWX Membership - Smart Contract Audit

References

Title Link

OWASP Risk Rating

Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness

Classification and Test Cases

https://swcregistry.io/

PUBLIC 138

