
Code Sekai
NFT Minting &
Transferring
In-game/Out-game
Smart Contract Audit Report

Date Issued: 17 Apr 2023

Version: Final v1.0

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About NFT Minting & Transferring In-game/Out-game 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 13

Appendix 104
About Us 104
Contact Information 104
References 105

PUBLIC 2

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the NFT Minting &
Transferring In-game/Out-game features. This audit report was published on 17 Apr 2023. The audit

scope is limited to the NFT Minting & Transferring In-game/Out-game features. Our security best

practices strongly recommend that the Code Sekai team conduct a full security audit for both on-chain and

off-chain components of its infrastructure and their interaction. A comprehensive examination has been

performed during the audit process utilizing Valix’s Formal Verification, Static Analysis, and Manual Review

techniques.

About NFT Minting & Transferring In-game/Out-game

NFT Minting: This allows users to mint their NFT with their on-chain randomized metadata and there are 3

rounds of minting for different groups of users which are Whitelist, Waitlist, and Public.

Transferring: This allows users to transfer their NFT into the Codesekai game and while NFT is in-game they

can’t transfer NFT to any wallets, if the users want to transfer NFT they must change the status back to

out-game.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Code Sekai protocol. The

scope is limited to the NFT Minting & Transferring In-game/Out-game features and their related smart

contracts.

The security audit covered the components at this specific state:

Item Description

Components
▪ NFT Minting & Transferring In-game/Out-game smart contracts

▪ Imported associated smart contracts and libraries

Git Repository
▪ http://gitlab.echoplus.io/echoplus/backend/codesekai-smart-contract-

audit.git

PUBLIC 3

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Audit Commit ▪ a65adff9df58137e67928fa48dc8987f60632e90 (branch: audit)

Reassessment Commit ▪ d2ee90e6974cc89e8df246f60e47bc8eeee38471 (branch: audit)

Audited Files

▪ ./contracts/CSKGen.sol

▪ ./contracts/CSKNFT.sol

▪ Other imported associated Solidity files

Excluded Files/Contracts ▪ -

Remark: Our security best practices strongly recommend that the Code Sekai team conduct a full security

audit for both on-chain and off-chain components of its infrastructure and the interaction between them.

PUBLIC 4

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Auditors

Role Staff List

Auditors

Parichaya Thanawuthikrai (Lead Auditor)
Anak Mirasing
Kritsada Dechawattana

Authors

Anak Mirasing
Kritsada Dechawattana
Parichaya Thanawuthikrai

Reviewers
Phuwanai Thummavet (Technical Advisor)
Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a

single point in time. As such, the scope was limited to current known risks during the work period. The review

does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred

percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided

code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or

“endorsement” of any particular project. This audit report should also not be used as investment advice nor

provide any legal compliance.

PUBLIC 5

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the NFT
Minting & Transferring In-game/Out-game features have sufficient security protections to be safe for use.

17 Apr 2023

Initially, Valix was able to identify 32 issues that were categorized from the “Critical” to “Informational” risk

level in the given timeframe of the assessment.

For the reassessment, the CodeSekai team acknowledged a total of 32 issues, including 1 critical issue, 9

high issues, 7 medium issues, 9 low issues, and 6 informational issues. Of these, the team was able to

completely fix 27 issues, partially fix 3 issues, and acknowledge 2 issues.

Below is the breakdown of the vulnerabilities found and their associated risk rating for each assessment

conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

NFT Minting &
Transferring

In-game/Out-game
1 9 7 9 6 0 2 0 1 2

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test

Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual

and automated review approaches can be mixed and matched, including business logic analysis in terms of

the malicious doer's perspective. Using automated scanning tools to navigate or find offending software

patterns in the codebase along with a purely manual or semi-automated approach, where the analyst

primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding of the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,

Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are

presented in the table.

Risk Level Definition

Critical
The code implementation does not match the specification, and it could disrupt the

platform.

High
The code implementation does not match the specification, or it could result in losing

funds for contract owners or users.

Medium
The code implementation does not match the specification under certain conditions, or it

could affect the security standard by losing access control.

Low
The code implementation does not follow best practices or use suboptimal design

patterns, which may lead to security vulnerabilities further down the line.

Informational
Findings in this category are informational and may be further improved by following best

practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as

illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.

● Impact measures the technical loss and business damage of a successful attack.

● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels

"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the

risk to an acceptable level.

PUBLIC 10

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Potential Replay Attack On NFT Updating Critical Fixed In use

2 Unprotected Initialization Of Crucial State Variables High Fixed In use

3 Lack Of Setter Function For signWallet State High Fixed In use

4 Permanently Losing The Admin Role High Fixed In use

5 Potential Replay Attack On NFT Minting High Fixed In use

6 Possibly Bypassing The Condition To Generate
Token High Fixed In use

7 Non-Uniqueness NFT Metadata Assignment High Acknowledged In use

8 Trust And Fairness Of Metadata Generation High Acknowledged In use

9 Recommended Improving Transparency And
Trustworthiness High Fixed In use

10 Burning Tokens Without Validating Availability Flag High Fixed In use

11 Improper Verification Of Supply Checking Medium Fixed In use

12 Inconsistent State In Token Management When
Burning Tokens Medium Fixed In use

13 Incorrect Condition For Removing Whitelist Medium Fixed In use

14 No Upper Bound For The Portal Price Medium Fixed In use

15 Lack Of Setter Function For adminWallet State Medium Fixed In use

16 Directly Minting Without Permission Medium Fixed In use

17 Possibly Setting Improper Period For Each Minting
Round Medium Fixed In use

18 Overpayment When Minting And Updating NFT Low Fixed In use

19 Lack Of Validating Input Parameters Low Fixed In use

20 Compiler Is Not Locked To Specific Version Low Fixed In use

PUBLIC 11

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

21 Compiler May Be Susceptible To Publicly Disclosed
Bugs Low Fixed In use

22 Arbitrarily Setting NFT Minting Prices Low Fixed In use

23 Potential Denial-Of-Service On The
getUserTokenAndInfos Function Low Fixed In use

24 Recommended Improving Transparency And
Traceability Of Crucial Variables Low Partially Fixed In use

25 Recommended Event Emissions For Transparency
And Traceability Low Fixed In use

26 Lack Of Checking Availability Of The Token ID Low Fixed In use

27 Recommended Removing Unused Interfaces Informational Fixed In use

28 Recommended Removing Unused Code Informational Fixed In use

29 Recommended Removing Unused Imported
Contract Informational Partially Fixed In use

30 Misspelling Of Crucial Function Name Informational Fixed In use

31 Recommended Adding Event Indexes Informational Fixed In use

32 Recommended Enforcing
Checks-Effects-Interactions Pattern Informational Partially Fixed In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 12

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Potential Replay Attack On NFT Updating

Risk Critical
Likelihood High

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations

CSKNFT.sol
● L: 76 - 81 (The SignInfo struct)
● L: 156 - 170 (The _hash function)
● L: 172 - 175 (The _verify function)
● L: 277 - 303 (The updateFlagStatus function)

Detailed Issue

We found the potential replay attack issue affects the updateFlagStatus function (L277 - 303 in the

code snippet 1.1).

The updateFlagStatus function can be executed by users to update a CodeSekaiNFT token availability and

metadata and then the updateFlagStatus function will verify the signature of the payload, the so-called

SignInfo (L76 - 81 in the code snippet 1.1). The SignInfo is of type struct as follows:

struct SignInfo {
uint256 tokenId;
string metadata;
bool status;
bytes signature;

}

To successfully update the status of a token, the sender and the token owner must be the same address

(L282), the given status must not be the previous status (L283 - 286), and the payload must be signed by the

owner's private key (L290).

However, we discovered the root cause of this issue is that the payload allows for multiple uses since
there is no tracking of the expiration time and nonce of the payload. As a result, an attacker can use
the same payload multiple times to update the token.

PUBLIC 13

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

76

77

78

79

80

81

156

157

158

159

160

161

163

163

164

165

166

167

168

169

170

171

172

173

174

175

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

struct SignInfo {

uint256 tokenId;

string metadata;

bool status;

bytes signature;

}

// (...SNIPPED...)

function _hash(SignInfo memory info) internal view returns (bytes32) {

return

_hashTypedDataV4(

keccak256(

abi.encode(

keccak256(

"SignInfo(uint256 tokenId,string metadata,bool status)"

),

info.tokenId,

keccak256(bytes(info.metadata)),

info.status

)

)

);

}

function _verify(SignInfo memory order) internal view returns (address) {

bytes32 digest = _hash(order);

return ECDSA.recover(digest, order.signature);

}

// (...SNIPPED...)

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

PUBLIC 14

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

294

295

296

297

298

299

300

301

302

303

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 1.1 The affected updateFlagStatus function and its related dependencies

Recommendations

We recommend adding the nonce and expiration time (L80 and L81 in the code snippet 1.2)
parameters to the SignInfo struct. The nonce and expiration time would prevent an attacker from
making the replay attack since the payload will be for single use and limit the deadline of the payload.

To use this nonce, we have to add the updateTokenNonces mapping (L93) to track the spending of each

signed payload, and the nonce must be increased every time the payload is consumed (L297).

Finally, when recovering the signer of the payload, the nonce (for each token owner) has to be computed in

the _hash function (L159 - 175). Moreover, we have to add the verification of the expiration time (L292) to

verify that the payload is not expired.

CSKNFT.sol

76

77

78

79

80

81

82

83

93

159

160

161

163

163

struct SignInfo {

uint256 tokenId;

string metadata;

bool status;

uint256 nonce;

uint256 expirationTime;

bytes signature;

}

// (...SNIPPED...)

mapping(address => uint256) public updateTokenNonces;

// (...SNIPPED...)

function _hash(SignInfo memory info) internal view returns (bytes32) {

return

_hashTypedDataV4(

keccak256(

abi.encode(

PUBLIC 15

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

keccak256(

"SignInfo(uint256 tokenId,string metadata,bool status,

uint256 nonce, uint256 expirationTime)"

),

info.tokenId,

keccak256(bytes(info.metadata)),

info.status,

info.nonce,

info.expirationTime

)

)

);

}

function _verify(SignInfo memory order) internal view returns (address) {

bytes32 digest = _hash(order);

return ECDSA.recover(digest, order.signature);

}

// (...SNIPPED...)

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

require(block.timestamp < _info.expirationTime, "Times out");

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

require(_info.nonce == updateTokenNonces[msg.sender]++, "Invalid nonce");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

PUBLIC 16

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Listing 1.2 The improved updateFlagStatus function and its related dependencies

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Regarding the configuration of the expirationTime parameter, the parameter can be freely set by the signer

(off-chain service). However, we noticed the possible attacks that can be initiated at the off-chain side
if the CodeSekai team sets the expirationTime parameter too large. Consider the following scenario to

understand the issue.

1. Assuming that the expirationTime parameter is set to 3600 seconds (1 hour) for each signed

payload.

2. An attacker bridges their NFT from the on-chain (smart contract) to the off-chain service.

3. The attacker asks for the signer (off-chain service) to sign their payload for bridging their NFT back

to the on-chain service (smart contract).

In this step, the signer signs the payload containing the NFT metadata and sets the payload’s
expirationTime parameter to 1 hour ahead of the signing time. This way, the attacker would
have 1 hour to perform the attack.

4. The attacker joins and plays the game.

5. Suppose that the attacker lost their items to the game.
6. The attacker adopts the payload previously signed in Step 3 to bridge their status back to the

on-chain service (smart contract).
7. Since the payload was validly signed by the legitimate signer and its expirationTime

parameter is not reached, the transaction is successfully executed.

Subsequently, the attacker can maliciously retrieve back their lost items. This attack can lead
to several double-spending issues.

For this reason, we recommend the CodeSekai team to set the value of the expirationTime parameter
properly. If possible, we recommend the team to apply mitigation solutions to their off-chain
services. For example, making sure that users would no longer execute any off-chain services if they have

triggered the off-chain signer.

PUBLIC 17

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

However, we recommend setting the value of the expirationTime parameter with a proper value to

mitigate any possible attacks originating from off-chain services. Refer to the Recommendation section

above for the detailed explanation.

If possible, we recommend the team to apply mitigation solutions to their off-chain services. For

example, ensuring users would no longer execute any off-chain services if they have triggered the off-chain

signer.

PUBLIC 18

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 2 Unprotected Initialization Of Crucial State Variables

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 48 - 56, L: 277 - 303

Detailed Issue

The CSKNFT contract contains an initialize function that can only be called once to set the values of the

baseTokenURI, adminWallet, and signWallet states (L28, 29, 30 in code snippet 2.1). These states are

crucial for the proper functioning of the contract, as the adminWallet is used to receive funds (L294 in code

snippet 2.1), and the signWallet is used to verify sign information (L289 in code snippet 2.1).

However, the visibility of the initialize function is set to public (L52 in code snippet 2.1), which means
that anyone can call it, even before the contract owner has a chance to set these values. This
vulnerability could allow an attacker to set arbitrary values for these states, which could cause the
system to malfunction.

For example, if an attacker knows the correct signWallet address, they could exploit the vulnerability in the

initialize function to set the adminWallet to an address under their control. This would enable them to receive

funds when the updateFlagStatus function is invoked by a user, as they could bypass the signature

verification requirement (L289 in code snippet 2.1).

Additionally, an attacker could set the baseTokenURI to point to a malicious website, causing unsuspecting

users to download malware or provide sensitive information.

As a result, this could be harmful to the system or cause it to malfunction.

CSKNFT.sol

28

29

30

48

string public baseTokenURI;

address payable private adminWallet;

address private signWallet;

// (...SNIPPED...)

function initialize(

PUBLIC 19

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

49

50

51

52

53

54

55

56

string memory _baseTokenUri,

address payable _adminWallet,

address payable _signWallet

) public initializer {

baseTokenURI = _baseTokenUri;

adminWallet = _adminWallet;

signWallet = _signWallet;

}

Listing 2.1 The initialize function of CSKNFT contract

CSKNFT.sol

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 2.2 The updateFlagStatus function of CSKNFT contract

PUBLIC 20

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend removing the initialize function and moving the code from the initialize function to the
constructor. This is because the CSKNFT contract is not an upgradeable contract, and it's unnecessary to

use an initialization function.

By moving the code to the constructor, we can ensure that the necessary values are set correctly from the

outset, and prevent any external calls to initialize that could potentially cause damage to the system.

Additionally, we recommend adding a check to ensure that the signWallet address is not set to the zero

address. This is important because the CSKNFT contract does not have a setter function to modify the

signWallet address after deployment.

CSKNFT.sol

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

constructor(

string memory _baseTokenUri,

address payable _adminWallet,

address _signWallet

)

ERC721("CodeSekaiNFT", "CSKI")

EIP712(SIGNING_DOMAIN, SIGNATURE_VERSION)

{

require(_signWallet != address(0), "Invalid _signWallet address");

_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

_grantRole(MINTER_ROLE, msg.sender);

_grantRole(DEV_ROLE, msg.sender);

baseTokenURI = _baseTokenUri;

adminWallet = _adminWallet;

signWallet = _signWallet;

}

Listing 2.3 The improved constructor function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 21

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 3 Lack Of Setter Function For signWallet State

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 30, 55, and 289 - 290

Detailed Issue

The updateFlagStatus function of the CSKNFT contract allows the NFT owner to update an NFT’s metadata

and status by providing the information, including the signature. Then there would be verifying that the

signature must be signed with the signWallet address before updating the NFT’s information (L289 - 290 in

the code snippet below).

However, we noticed that the signWallet address (L30 in the code snippet below) is assigned once at the

initialize function (L55 in the code snippet below) and cannot change later.

Consequently, if the off-chain signer address is changed, the updateFlagStatus invoking will be
reverted because the off-chain signer and signWallet address are not the same address (L289 - 290 in

the code snippet below).

CSKNFT.sol

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

contract CSKNFT is

ERC721,

EIP712,

ERC721Enumerable,

ERC721Burnable,

AccessControl,

Ownable,

Initializable,

ReentrancyGuard

{

using Counters for Counters.Counter;

/// @dev Base token URI used as a prefix by tokenURI().

string public baseTokenURI;

address payable private adminWallet;

address private signWallet;

PUBLIC 22

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

48

49

50

51

52

53

54

55

56

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

//(...SNIPPED...)

function initialize(

string memory _baseTokenUri,

address payable _adminWallet,

address payable _signWallet

) public initializer {

baseTokenURI = _baseTokenUri;

adminWallet = _adminWallet;

signWallet = _signWallet;

}

//(...SNIPPED...)

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 3.1 The mechanism to verify the signer

PUBLIC 23

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend adding the setter function to enable changing the signWallet address.

Furthermore, we suggest governing the setSignWallet function with the TIMELOCK_DEV_ROLE. The

TIMELOCK_DEV_ROLE is assigned as the only role authorized to execute the associated functions. This

would improve the transparency and trustworthiness of privileged operations.

For more information about the usage of the TIMELOCK_DEV_ROLE, please refer to issue #9 -
Recommended Improvements for Transparency and Trustworthiness.

CSKNFT.sol

322

323

324

325

326

327

328

329

330

331

event ChangeSignWallet(address indexed prevSignWallet, address indexed

newSignWallet, address indexed executor);

//(...SNIPPED...)

function setSignWallet(address _signWallet)

public

onlyRole(TIMELOCK_DEV_ROLE)

{

require(_signWallet != address(0), "Invalid address");

address prevSignWallet = signWallet;

signWallet = _signWallet;

emit ChangeSignWallet(prevSignWallet, signWallet, msg.sender);

}

Listing 3.2 The new setSignWallet function allows for changing the signWallet address

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 24

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 4 Permanently Losing The Admin Role

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/AccessControl.sol

Locations AccessControl.sol L: 179 - 183 (The renounceRole function)

Detailed Issue

The CSKGen and CSKNFT contracts derive the renounceRole function (L179 - 183 in the code snippet 4.1)

function from the AccessControl contract. This function can be invoked by anyone to remove their specific

role.

We consider the renounceRole function risky since it can remove privileged roles, including the

DEFAULT_ADMIN_ROLE, which is the top-level role. Consider the case that the only account with the

DEFAULT_ADMIN_ROLE role is removed by calling the renounceRole function.

The CSKGen and CSKNFT contracts will be dangled immediately since the contract will have no account

with the DEFAULT_ADMIN_ROLE role anymore, and this is unrecoverable.

AccessControl.sol

179

180

181

182

183

241

242

243

244

245

246

function renounceRole(bytes32 role, address account) public virtual override {

require(account == _msgSender(), "AccessControl: can only renounce roles for

self");

_revokeRole(role, account);

}

// (...SNIPPED...)

function _revokeRole(bytes32 role, address account) internal virtual {

if (hasRole(role, account)) {

_roles[role].members[account] = false;

emit RoleRevoked(role, account, _msgSender());

}

}

Listing 4.1 The renounceRole function of the AccessControl contract

PUBLIC 25

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Moreover, the revokeRole function of the AccessControl contract still has the ability to remove the

DEFAULT_ADMIN_ROLE, despite the issue we discovered. However, It is important to carefully use this

function since it could lead to unexpected consequences.

Recommendations

We recommend overriding and implementing the renounceRole function to the CSKGen and CSKNFT
contracts as the following code snippet to avoid the case that the sole account with the

DEFAULT_ADMIN_ROLE role is removed accidentally.

CSKGen.sol

230

231

232

233

234

function renounceRole(bytes32 role, address account) public virtual

override(AccessControl) {

require(!(hasRole(DEFAULT_ADMIN_ROLE, account)), "AccessControl: cannot

renounce the DEFAULT_ADMIN_ROLE account");

super.renounceRole(role, account);

}

Listing 4.2 The example overridden renounceRole function of the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Furthermore, since no specific code or solution can completely fix the revokeRole function issue without

breaking the contract's features, we suggest taking necessary precautions while using the function.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 26

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 5 Potential Replay Attack On NFT Minting

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations

CSKGen.sol
● L: 48 - 54 (The MintInfo struct)
● L: 167 - 182 (The _hash function)
● L: 164 - 187 (The _verify function)
● L: 190 - 228 (The genToken function)

Detailed Issue

We found the potential replay attack issue affects the genToken function (L190 - 228 in the code

snippet 5.1).

The genToken function can be executed by users to mint a CodeSekaiNFT token and then the genToken

function will verify the signature of the payload, the so-called MintInfo (L48 - 54 in the code snippet 5.1). The

MintInfo is of type struct as follows:

struct MintInfo {
address minter;
uint256 timestamp;
uint256 mintType;
uint256 metadata;
bytes signature;

}

In order for the minting process to be successful, the payload must not be expired (L193), the sender and the

token minter must have the same address (L194), and the payload must be signed by the owner's private

key (L198).

However, we consider the scenario that the signer accidentally signs the MintInfo Payload with an
incorrect MintType (i.e., mintType greater than 2). In this case, even though there is a verification state for

each minting round (L201, L209, and L218), the token will be minted without proper permission and
payment, and the minter could potentially use the same MintInfo payload to execute multiple replay
attacks.

PUBLIC 27

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKGen.sol

48

49

50

51

52

53

54

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

struct MintInfo {

address minter;

uint256 timestamp;

uint256 mintType;

uint256 metadata;

bytes signature;

}

// (...SNIPPED...)

function _hash(MintInfo memory info) internal view returns (bytes32) {

return

_hashTypedDataV4(

keccak256(

abi.encode(

keccak256(

"MintInfo(address minter,uint256 timestamp,uint256

mintType,uint256 metadata)"

),

info.minter,

info.timestamp,

info.mintType,

info.metadata

)

)

);

}

function _verify(MintInfo memory info) internal view returns (address) {

bytes32 digest = _hash(info);

return ECDSA.recover(digest, info.signature);

}

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

PUBLIC 28

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 5.1 The affected genToken function and its related dependencies

Recommendations

We recommend adding the nonce (L53 in the code snippet 5.2) parameter to the MintInfoI struct. The
nonce would prevent the minter from making the replay attack since the payload will be for single use.

To use this nonce, we have to add the genTokenNonces mapping (L89) to track the spending of each signed

payload, and the nonce must be updated every time the payload is used (L202).

Finally, when recovering the signer of the payload, the nonce has to be computed in the _hash function

(L169 - 185).

CSKGen.sol

48

49

50

51

52

53

54

55

struct MintInfo {

address minter;

uint256 timestamp;

uint256 mintType;

uint256 metadata;

uint256 nonce;

bytes signature;

}

PUBLIC 29

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

89

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

// (...SNIPPED...)

mapping(address => uint256) public genTokenNonces;

// (...SNIPPED...)

function _hash(MintInfo memory info) internal view returns (bytes32) {

return

_hashTypedDataV4(

keccak256(

abi.encode(

keccak256(

"MintInfo(address minter,uint256 timestamp,uint256

mintType,uint256 metadata, uint256 nonce)"

),

info.minter,

info.timestamp,

info.mintType,

info.metadata,

info.nonce

)

)

);

}

function _verify(MintInfo memory info) internal view returns (address) {

bytes32 digest = _hash(info);

return ECDSA.recover(digest, info.signature);

}

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

require(info.nonce == genTokenNonces[info.minter]++, "Invalid nonce");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

PUBLIC 30

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 5.2 The improved genToken function and its related dependencies

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 31

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 6 Possibly Bypassing The Condition To Generate Token

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 190 - 228

Detailed Issue

The genToken function in the CSKGen contract allows users to mint NFTs, but we discovered a
vulnerability that could allow a user to bypass payment requirements, maximum minting limits per
user, and whitelist checks.

The root cause of all three cases is the same, if the signer mistakenly sets the MintInfo.mintType value
to a value outside the range of 0-2 during the signing process, causing the genToken function to skip
all if-else conditions (L200, L208, and L217 in code snippet 6.1). To provide more detail, we will explain

each case separately:

1. Bypass payment requirement

Since the genToken function bypasses all if-else conditions, the ethAmount variable is not
properly set to the minting price (L191 in code snippet 6.1). This results in a default value of 0,

which causes the function to bypass the payment verification (L223 in code snippet 6.1) even when

the user has not paid any Ether. As a result, the user is able to mint NFTs without paying any
Ether.

2. Bypass maximum minting limits

Since the genToken function bypasses all if-else conditions, the minting limits set by the CSKGen

contract are also bypassed. Specifically, the CSKGen contract allows each user to mint a maximum

of two tokens, with one token per whitelist or waitlist round, and one token for the public round.

However, with the vulnerability, a user can mint more than 2 tokens because the
mintTotalCount[msg.sender].WlRound and mintTotalCount[msg.sender].PbRound
requirements are not checked (L201, L209, L218 in code snippet 6.1), allowing the user to
bypass the intended minting limits.

PUBLIC 32

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

3. Bypass whitelist checks

Since the genToken function bypasses all if-else conditions, the wlLists[MintType.Whitelist] and

wlLists[MintType.Waitlist] states that are used to check whitelist or waitlist users are also skipped.

This means that users who are not on the whitelist or waitlist can still mint NFTs, which could

lead to an unfair distribution of tokens.

As a result, any users can potentially bypass payment requirements, maximum minting limits, and
whitelist checks when minting NFTs, leading to a loss of revenue for the system and unfair to other
users.

CSKGen.sol

48

49

50

51

52

53

54

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

struct MintInfo {

address minter;

uint256 timestamp;

uint256 mintType;

uint256 metadata;

bytes signature;

}

// (...SNIPPED...)

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

PUBLIC 33

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

216

217

218

219

220

221

222

223

224

225

226

227

228

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 6.1 The genToken function of the CSKGen contract

CSKGen.sol

152

153

154

155

156

157

158

159

160

161

162

163

164

165

function loopGenToken(MintType _mintType, uint256 metadata) internal {

string memory results = Strings.toString(metadata);

if (_mintType == MintType.Mint) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Mint);

mintTotalCount[msg.sender].PbRound += 1;

} else if (_mintType == MintType.Whitelist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Whitelist);

mintTotalCount[msg.sender].WlRound += 1;

} else if (_mintType == MintType.Waitlist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Waitlist);

mintTotalCount[msg.sender].WlRound += 1;

}

}

Listing 6.2 The loopGenToken function of the CSKGen contract

Recommendations

We recommend improving the genToken function to handle the scenario where the MintInfo.mintType value

is out of range by adding an else case that reverts the transaction if the MintInfo.mintType value is out of

range (L221 - 223 in code snippet 6.3).

This improvement would prevent any unintended minting of NFTs and avoid the loss of revenue and

unfairness that could occur if a user were able to bypass payment requirements, maximum minting limits per

user, and whitelist checks.

PUBLIC 34

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKGen.sol

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

} else {

revert("Incorrect Minting Type: Out Of Range");

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 6.3 The improved genToken function of the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 35

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 36

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 7 Non-Uniqueness NFT Metadata Assignment

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/CSKNFT.sol

Locations

CSKNFT.sol
● L: 86
● L: 214 - 223 (The delMint function)
● L: 225 - 261 (The mint function)
● L: 277 - 303 (The updateFlagStatus function)

Detailed Issue

The metadata within the UserAsset struct (L86 in code snippet 7.1) is the crucial part of the CSKNFT
contract that represents the NFT's properties and rarity.

For explanation, the metadata of NFT is determined once minted (code snippet 7.2) and could be changed

via the updateFlagStatus function (code snippet 7.3).

However, these operations fully trust that the metadata provided by the off-chain service (the CodeSekai
platform) is legitimate without verifying that each metadata must be assigned to only a specific NFT.
In other words, each single metadata should ideally be assigned to only a single NFT at a time.

If the same metadata is assigned to multiple NFTs, several issues and concerns–such as transparency,

traceability, fairness, uniqueness, etc–can occur due to the non-uniqueness of the in-game NFT items’
metadata.

CSKNFT.sol

83

84

85

86

87

struct UserAsset {

uint256 tokenId;

bool isAvailable;

string metadata;

}

Listing 7.1 The metadata that represents the NFT's properties and rarity

PUBLIC 37

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

function delMint(address _userAddr, string memory metadata) internal {

//start tokenId at 1

tokenIdCounter.increment();

uint256 tokenId = tokenIdCounter.current();

require(tokenId <= TOTAL_SUPPLY, "Max supply");

_safeMint(_userAddr, tokenId);

tokenInfo[tokenId] = UserAsset(tokenId, true, metadata);

}

function mint(

address _userAddr,

string calldata metadata,

MintType _mintType

) external onlyRole(MINTER_ROLE) {

if (_mintType == MintType.Mint) {

require(

block.timestamp >= mintDates.MINT_START_DATE,

"not started."

);

require(block.timestamp <= mintDates.MINT_END_DATE, "ended.");

} else if (_mintType == MintType.Whitelist) {

require(

block.timestamp >= mintDates.START_WHITELIST,

"Wl not started."

);

require(block.timestamp <= mintDates.END_WHITELIST, "Wl ended.");

} else if (_mintType == MintType.Waitlist) {

require(

block.timestamp >= mintDates.START_WAITLIST,

"Waitlist not started."

);

require(

block.timestamp <= mintDates.END_WAITLIST,

"Waitlist ended."

);

}

delMint(_userAddr, metadata);

emit MintNft(

_userAddr,

tokenIdCounter.current(),

block.timestamp,

_mintType

);

}

PUBLIC 38

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Listing 7.2 The mint function that trusts the provided metadata

CSKNFT.sol

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 7.3 The updateFlagStatus function that trusts the provided metadata

Recommendations

Since the CSKNFT contract is designed to fully trust the metadata provided by the off-chain service (the

CodeSekai platform), no recommended code can fully fix this issue without breaking the contract’s
features.

However, we recommend the CodeSekai team to redesign and reimplement both the related on-chain
service (smart contract) and off-chain service (front-end and back-end) to guarantee that the case of
the non-uniqueness of the in-game NFT items’ metadata described above would not be happened
unexpectedly as well as not compromising the platform’s business requirements.

One recommended mitigation strategy is to perform a source code review on the off-chain services
to ensure that the generated metadata for NFT items are unique.

PUBLIC 39

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team has acknowledged the existence of this issue and already implemented a solution in

the form of a smart contract called RandomWorker. This contract is responsible for generating and storing

trackable metadata transparently. To prevent unauthorized access by hackers, the contract must remain

enclosed until the minting process is complete.

Furthermore, it is important to note that the RandomWorker contract falls outside the scope of our audit.

Therefore, we strongly recommend that the team undertake a full security audit of the RandomWorker
contract.

PUBLIC 40

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 8 Trust And Fairness Of Metadata Generation

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations CSKGen.sol L: 152 - 165 (The loopGenToken function)
CSKNFT.sol L: 152 - 165 (The updateFlagStatus function)

Detailed Issue

The genToken and updateFlagStatus functions utilize signed payloads (MintInfo for the genToken function

and SignInfo for the updateFlagStatus function) to mint (L153 and L227 in the code snippet 8.1) and update

tokens (L297 in the code snippet 8.1), respectively. Both payload types include a crucial field, namely the

metadata field.

However, it is important to note that in the minting and updating process, the metadata is assigned
directly from the off-chain source. For this reason, the current audit scope cannot guarantee the

randomness of the metadata, as its accuracy and reliability depend on the off-chain source.

This creates a potential security risk and could compromise the integrity and reliability of the token's

metadata.

CSKGen.sol

152

153

154

155

156

157

158

159

160

161

162

163

164

165

function loopGenToken(MintType _mintType, uint256 metadata) internal {

string memory results = Strings.toString(metadata);

if (_mintType == MintType.Mint) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Mint);

mintTotalCount[msg.sender].PbRound += 1;

} else if (_mintType == MintType.Whitelist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Whitelist);

mintTotalCount[msg.sender].WlRound += 1;

} else if (_mintType == MintType.Waitlist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Waitlist);

mintTotalCount[msg.sender].WlRound += 1;

}

}

// (...SNIPPED...)

PUBLIC 41

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 8.1 The loopGenToken and genToken functions of the CSKNFT contract

PUBLIC 42

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 8.2 The updateFlagStatus function of the CSKNFT contract

Recommendations

We strongly recommend that the team conducts a thorough penetration testing and source code review
of the off-chain source. This testing will ensure the authenticity and reliability of the off-chain source before

assigning metadata to tokens in the smart contract, thereby increasing the reliability and integrity of the

token's metadata.

Reassessment

The CodeSekai team has acknowledged the existence of this issue and already implemented a solution in

the form of a smart contract called RandomWorker. This contract is responsible for generating and storing

trackable metadata transparently. To prevent unauthorized access by hackers, the contract must remain

enclosed until the minting process is complete.

PUBLIC 43

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Furthermore, it is important to note that the RandomWorker contract falls outside the scope of our audit.

Therefore, we strongly recommend that the team undertake a full security audit of the RandomWorker

contract.

PUBLIC 44

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 9 Recommended Improving Transparency And Trustworthiness

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files
@openzeppelin/contracts/access/AccessControl.sol
contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations

AccessControl.sol
● L: 144 - 146 (The grantRole function)
● L: 159 - 161 (The revokeRole function)

CSKGen.sol
● L: 96 - 101 (The setRandomWorker function)
● L: 103 - 108 (The setSingWallet function)
● L: 110 - 121 (The setPrice function)
● L: 132 - 150 (The setWhitelists function)

CSKNFT.sol
● L: 133 - 138 (The setBaseURI function)
● L: 197 - 212 (The setPeriods function)
● L: 270 - 275 (The setPortalPrice function)

Detailed Issue

We have discovered that the CSKGen and CSKNFT contracts utilize the AccessControl contract, inheriting it

to implement high-level roles necessary for performing critical mechanisms.

The following lists all privileged functions that should be improved transparency and trustworthiness:

● The AccessControl contract

○ The grantRole function

○ The revokeRole function

● The CSKGen contract

○ The setRandomWorker function

○ The setSingWallet function

○ The setPrice function

○ The setWhitelists function

PUBLIC 45

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

● The CSKNFT contract

○ The setBaseURI function

○ The setPeriods function

○ The setPortalPrice function

Our analysis found that those functions listed can change important states, which could affect the users’

assets. For this reason, we consider that those functions should be improved for transparency and

trustworthiness.

CSKGen.sol

103

104

105

106

107

108

function setSingWallet(address _newSignWallet)

public

onlyRole(DEV_ROLE)

{

signWallet = _newSignWallet;

}

Listing 9.1 The example function that can be invoked by a privileged role

Code snippet 9.1 above exhibits an example of the privileged function setSingWallet. The function can be

executed by an admin with the DEV_ROLE role (L105).

Recommendations

We recommend governing the associated setter functions with the Timelock mechanism to improve the

transparency and trustworthiness of the privileged operations.

We recommend replacing the DEV_ROLE role with the TIMELOCK_DEV_ROLE role instead. The
TIMELOCK_DEV_ROLE role should point to an address of the Timelock contract.

The Timelock mechanism allows for a specified amount of time to pass before the proposed changes can

be executed, providing users with sufficient time to review and assess the proposed changes.

For the recommended Timelock contract, please refer to: https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/governance/TimelockController.sol.

Please apply the TIMELOCK_DEV_ROLE to the following functions:

● The AccessControl contract

○ The grantRole function

○ The revokeRole function

PUBLIC 46

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/TimelockController.sol

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

● The CSKGen contract

○ The setRandomWorker function

○ The setSingWallet function

○ The setPrice function

○ The setWhitelists function

● The CSKNFT contract

○ The setBaseURI function

○ The setPeriods function

○ The setPortalPrice function

CSKGen.sol

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

87

105

106

107

108

109

bytes32 public constant TIMELOCK_DEV_ROLE = keccak256("TIMELOCK_DEV_ROLE");

address public timelockAddress;

// (...SNIPPED...)

event SetTimelock(address indexed prevTimelockAddress, address indexed

newTimeLockAddress);

// (...SNIPPED...)

constructor(

address _nftCore,

address _randomWokerAddr,

address payable _adminWallet,

address _signWallet,

address _timelockAddress

) EIP712(SIGNING_DOMAIN, SIGNATURE_VERSION) {

require(_timelockAddress != address(0), "Invalid address");

_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

_grantRole(TIMELOCK_DEV_ROLE, _timelockAddress); // assigning a role to the

timelock contract

nftCore = INFTCORE(_nftCore);

iRandomWorker = IRANDOMWORKER(_randomWokerAddr);

adminWallet = _adminWallet;

signWallet = _signWallet;

timelockAddress = _timelockAddress;

}

// (...SNIPPED...)

function setSingWallet(address _newSignWallet)

public

onlyRole(TIMELOCK_DEV_ROLE)

{

signWallet = _newSignWallet;

PUBLIC 47

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

110

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

}

// (...SNIPPED...)

function grantRole(bytes32 role, address account)

public

virtual

override(AccessControl)

onlyRole(TIMELOCK_DEV_ROLE)

{

_grantRole(role, account);

}

function setTimelock(address newTimelockAddress) external

onlyRole(TIMELOCK_DEV_ROLE) {

require(newTimelockAddress != address(0), "Invalid newTimelockAddress

address");

address prevTimelockAddress = timelockAddress;

timelockAddress = newTimelockAddress;

_revokeRole(TIMELOCK_DEV_ROLE, prevTimelockAddress);

_grantRole(TIMELOCK_DEV_ROLE, newTimelockAddress);

emit SetTimelock(prevTimelockAddress, newTimelockAddress);

}

Listing 9.2 The example using of Timelock mechanism in the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 48

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 10 Burning Tokens Without Validating Availability Flag

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol
@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol

Locations ERC721Burnable.sol L: 21 -25

Detailed Issue

We found that the CSKNFT contract inherits the ERC721Burnable contract, which includes a burn function

for burning tokens. However, this function does not check the tokenInfo[tokenId].isAvailable flag status

state, meaning that unavailable tokens can still be burned, even though they should not be burnable or

transferable.

As a result, if a token owner mistakenly invokes the burn function for an unavailable token, the token
will be burned and may lead to an inconsistency between the off-chain and on-chain data that is
associated with the token.

CSKNFT.sol

1

2

3

4

5

6

15

16

17

18

19

20

21

22

23

24

// SPDX-License-Identifier: CODESEKAI

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";

import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";

import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol";

// (...SNIPPED...)

contract CSKNFT is

ERC721,

EIP712,

ERC721Enumerable,

ERC721Burnable,

AccessControl,

Ownable,

Initializable,

ReentrancyGuard

{

// (...SNIPPED...)

PUBLIC 49

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

322 }

Listing 10.1 The CSKNFT contract that inherits the ERC721Burnable contract

ERC721Burnable.sol

21

22

23

24

25

function burn(uint256 tokenId) public virtual {

//solhint-disable-next-line max-line-length

require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not

token owner or approved");

_burn(tokenId);

}

Listing 10.2 The burn function of the ERC721Burnable contract

Recommendations

We recommend overriding the burn function in the CSKNFT contract to include a check of the

tokenInfo[tokenId].isAvailable flag status state before the token is burned. This will ensure that
unavailable tokens are not burned, preventing the inconsistency that can occur between the off-chain and

on-chain data.

CSKNFT.sol

323

324

325

326

function burn(uint256 tokenId) public override {

require(checkFlagStatus(tokenId), "not available");

super.burn(tokenId);

}

Listing 10.3 The overridden burn function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 50

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 11 Improper Verification Of Supply Checking

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files
contracts/CSKNFT.sol
@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol
@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol

Locations CSKNFT.sol L: 214 - 223

Detailed Issue

The CSKNFT contract uses the tokenIdCounter variable to keep track of the number of tokens minted. When

a new token is minted using the delMint function, the tokenIdCounter is incremented, and the tokenId of the

new token is set to the current value of the tokenIdCounter. The tokenId is then checked against the

TOTAL_SUPPLY constant to ensure that the total supply of tokens has not been exceeded (L219 in code

snippet 11.1).

However, the contract relies on the tokenId to check with the TOTAL_SUPPLY constant, rather than querying

the actual total supply of tokens from the contract using the ERC721Enumerable.totalSupply function. This
could cause the tokenId to exceed the actual total supply of tokens, resulting in the delMint function
failing to mint a new token and reverting the transaction.

For example, the TOTAL_SUPPLY constant is set to 5555, and suppose 5555 tokens have already been

minted. If a user burns their token, it will decrease the current number of tokens in circulation to 5554.

Subsequently, if another user tries to mint a new token using the delMint function, the tokenIdCounter will be

incremented to 5556. This will cause the function to fail because the tokenId of the new token will exceed the

TOTAL_SUPPLY constant, leading to confusion and potentially causing failed transactions.

As a result, this issue could cause confusion and potentially lead to failed transactions if users try to mint

new tokens when the actual total supply of tokens is less than the TOTAL_SUPPLY constant.

PUBLIC 51

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

37

58

214

215

216

217

218

219

220

221

222

223

Counters.Counter private tokenIdCounter;

// (...SNIPPED...)

uint256 public constant TOTAL_SUPPLY = 5_555;

// (...SNIPPED...)

function delMint(address _userAddr, string memory metadata) internal {

//start tokenId at 1

tokenIdCounter.increment();

uint256 tokenId = tokenIdCounter.current();

require(tokenId <= TOTAL_SUPPLY, "Max supply");

_safeMint(_userAddr, tokenId);

tokenInfo[tokenId] = UserAsset(tokenId, true, metadata);

}

Listing 11.1 The delMint function of the CSKNFT contract

Recommendations

We recommend using the totalSupply function provided by the ERC721Enumerable contract that
gives the actual total number of tokens in circulation to check if the total supply has been reached
instead of relying on the tokenId value.

This is because relying on tokenId can lead to issues when tokens are burned, and the tokenId value

exceeds the TOTAL_SUPPLY constant.

CSKNFT.sol

214

215

216

217

218

219

220

221

222

223

224

function delMint(address _userAddr, string memory metadata) internal {

uint256 currentSupply = totalSupply();

require(currentSupply < TOTAL_SUPPLY, "Max supply");

//start tokenId at 1

tokenIdCounter.increment();

uint256 tokenId = tokenIdCounter.current();

_safeMint(_userAddr, tokenId);

tokenInfo[tokenId] = UserAsset(tokenId, true, metadata);

}

Listing 11.2 The improved delMint function of the CSKNFT function

PUBLIC 52

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 53

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 12 Inconsistent State In Token Management When Burning Tokens

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol
@openzeppelin/contracts/token/ERC721/extensions/ERC721Burnable.sol

Locations CSKNFT.sol L: 83 - 87, 90

Detailed Issue

The CSKNFT contract uses the tokenInfo mapping to keep track of the token information for each token. The

mapping maps a token ID to a UserAsset struct, which contains the token ID, a boolean flag indicating

whether the token is available for transfer, and the metadata associated with the token (L90 in code snippet

12.1).

However, when a user burns a token using the ERC721Burnable.burn function, the contract does not
update the tokenInfo mapping to reflect the fact that the token has been burned. This means that the
tokenId, isAvailable flag, and metadata associated with the burned token continue to hold their old
values, even though the token no longer exists.

This inconsistency can cause issues in several functions that rely on the tokenInfo mapping.

1. The checkFlagStatus function (L144 - 146 in code snippet 12.2)

2. The checkMetadata function (L148 - 154 in code snippet 12.2)

3. The getUserTokenAndInfos function (L177 - 195 in code snippet 12.2)

As a result, these functions can return inconsistent or incorrect results when querying for information about a

burned token.

CSKNFT.sol

83

84

85

86

87

88

89

struct UserAsset {

uint256 tokenId;

bool isAvailable;

string metadata;

}

MintDates private mintDates;

PUBLIC 54

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

90 mapping(uint256 => UserAsset) private tokenInfo;

Listing 12.1 The tokenInfo state variable

CSKNFT.sol

144

145

146

147

148

149

150

151

152

153

154

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

function checkFlagStatus(uint256 tokenId) public view returns (bool) {

return tokenInfo[tokenId].isAvailable;

}

function checkMetadata(uint256 tokenId)

public

view

returns (string memory)

{

return tokenInfo[tokenId].metadata;

}

// (...SNIPPED...)

function getUserTokenAndInfos(address userAddress)

public

view

returns (UserAsset[] memory)

{

uint256 balance = balanceOf(userAddress);

UserAsset[] memory userAssets = new UserAsset[](balance);

for (uint32 i = 0; i < uint32(balance); i++) {

uint256 tokenId = tokenOfOwnerByIndex(userAddress, i);

string memory metadata = tokenInfo[tokenId].metadata;

bool status = checkFlagStatus(tokenId);

userAssets[i].tokenId = tokenId;

userAssets[i].isAvailable = status;

userAssets[i].metadata = metadata;

}

return userAssets;

}

Listing 12.2 The several functions that rely on the tokenInfo mapping

PUBLIC 55

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend overriding the ERC721Burnable.burn function and adding a condition to check if the
token is available before deleting the token information from the tokenInfo mapping. This will ensure

that the token information is properly updated when a token is burned

CSKNFT.sol

323

324

325

326

327

328

event BurnNFT(uint256 indexed tokenId, address indexed burner, uint256

burnedAt);

function burn(uint256 tokenId) public override {

require(checkFlagStatus(tokenId), "not available");

emit BurnNFT(tokenId, msg.sender, block.timestamp);

delete tokenInfo[tokenId];

super.burn(tokenId);

}

Listing 12.3 The overridden ERC721Burnable.burn function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 56

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 13 Incorrect Condition For Removing Whitelist

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 132 - 150 (The setWhitelists function)

Detailed Issue

The CSKGen contract includes a feature to manage the whitelisted addresses through the setWhitelists

function. However, We discovered that there is an incorrect functionality in the remove whitelist logic (L143 -

149 in the provided code snippet).

To elaborate, the incorrect logic is verifying the statement !wlLists[wlType][_userAddresses[i]], which
evaluates the false boolean value rather than true in order to remove the given addresses from the
whitelist.

This issue could lead to unexpected results and must be addressed to ensure proper functionality.

CSKGen.sol

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

function setWhitelists(

MintType wlType,

address[] memory _userAddresses,

Whitelist _doType

) public onlyRole(DEV_ROLE) {

if (_doType == Whitelist.Add) {

for (uint32 i = 0; i < _userAddresses.length; i++) {

if (!wlLists[wlType][_userAddresses[i]]) {

wlLists[wlType][_userAddresses[i]] = true;

}

}

} else if (_doType == Whitelist.Remove) {

for (uint32 i = 0; i < _userAddresses.length; i++) {

if (!wlLists[wlType][_userAddresses[i]]) {

wlLists[wlType][_userAddresses[i]] = false;

}

}

}

}

PUBLIC 57

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Listing 13.1 The setWhitelists function of the CSKGen contract

Recommendations

We recommend changing the logic for disabling whitelist addresses as shown in the code snippet below.

CSKGen.sol

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

function setWhitelists(

MintType wlType,

address[] memory _userAddresses,

Whitelist _doType

) public onlyRole(DEV_ROLE) {

if (_doType == Whitelist.Add) {

for (uint32 i = 0; i < _userAddresses.length; i++) {

if (!wlLists[wlType][_userAddresses[i]]) {

wlLists[wlType][_userAddresses[i]] = true;

}

}

} else if (_doType == Whitelist.Remove) {

for (uint32 i = 0; i < _userAddresses.length; i++) {

if (wlLists[wlType][_userAddresses[i]]) {

wlLists[wlType][_userAddresses[i]] = false;

}

}

}

}

Listing 13.2 The improved setWhitelists function of the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 58

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 14 No Upper Bound For The Portal Price

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 270 - 276

Detailed Issue

The updateFlagStatus function of the CSKNFT contract allows the NFT owner to update an NFT’s metadata

and status by paying a fee greater or equal to the PORTAL_PRICE (L293 in code snippet 14.1).

However, we found that the setPortalPrice function allows the DEV_ROLE to arbitrarily adjust the

PORTAL_PRICE variable (L270 - 275 in code snippet 14.2) without the maximum upper bound of the portal

fee, which directly affects the users’ fee when updating their NFT.

Consider the case that the fee is set too high, the users might not be able to bridge back to the on-chain

service.

CSKNFT.sol

59

277

278

279

280

281

282

283

284

285

286

287

288

289

290

uint256 public PORTAL_PRICE = 0.0005 ether;

//(...SNIPPED...)

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

PUBLIC 59

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

291

292

293

294

295

296

297

298

299

300

301

302

303

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 14.1 The updateFlagStatus function that
charges a fee depending on the PORTAL_PRICE variable

CSKNFT.sol

270

271

272

273

274

275

function setPortalPrice(uint256 newPrice)

public

onlyRole(DEV_ROLE)

{

PORTAL_PRICE = newPrice;

}

Listing 14.2 The setPortalPrice function lacks of boundary checking for the portal price

Recommendations

We recommend setting the maximum upper bound of the portal fee in the setPortalPrice function as shown

in the code snippet below.

The MAX_PORTAL_PRICE should be a constant to limit the maximum users’ fee when updating their NFT.

CSKNFT.sol

270

271

272

273

274

// set max portal price properly

uint256 public constant MAX_PORTAL_PRICE = 0.0005 ether;

//(...SNIPPED...)

function setPortalPrice(uint256 newPrice)

public

onlyRole(DEV_ROLE)

{

require(newPrice_ <= MAX_PORTAL_PRICE, "invalid portal price");

PUBLIC 60

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

275

276

PORTAL_PRICE = newPrice;

}

Listing 14.3 The improved setPortalPrice function that checks the maximum portal price

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 61

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 15 Lack Of Setter Function For adminWallet State

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 36

Detailed Issue

We found that the CSKGen contract has a state variable called adminWallet (L36 in code snippet 15.1),

which is used to receive funds when users mint NFT tokens (L224 in code snippet 15.1).

We noticed that the adminWallet wallet is only set once in the constructor and cannot be changed later

because there is no setter function in the contract. This means that if the adminWallet wallet is
compromised by an attacker or lost due to unforeseen circumstances, the owner of the adminWallet
wallet would not be able to receive any revenue generated by the NFT minting process.

CSKGen.sol

33

34

35

36

190

223

224

225

226

227

228

229

contract CSKGen is EIP712, AccessControl, ReentrancyGuard {

INFTCORE public nftCore;

IRANDOMWORKER private iRandomWorker;

address payable private adminWallet;

// (...SNIPPED...)

function genToken(MintInfo calldata info) external payable nonReentrant {

// (...SNIPPED...)

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

}

Listing 15.1 The adminWallet wallet of the CSKGen contract

PUBLIC 62

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend adding a setter function for the adminWallet wallet in the CSKGen contract.

This function should only be accessible to the DEFAULT_ADMIN_ROLE to prevent unauthorized changes

and ensure that the adminWallet wallet can be updated in case of compromise or loss, and that any revenue

generated by the NFT minting process can be received.

CSKGen.sol

230

231

232

233

234

235

236

237

238

function setAdminWallet(address payable _adminWallet)

public

onlyRole(DEFAULT_ADMIN_ROLE)

{

require(_adminWallet != address(0), "Invalid address");

address previousAdminWallet = adminWallet;

adminWallet = _adminWallet;

emit setAdminWallet(previousAdminWallet, adminWallet);

}

Listing 15.2 The setAdminWallet function of the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 63

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 16 Directly Minting Without Permission

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 225 - 261 (The mint function)

Detailed Issue

The CSKNFT contract uses the AccessControl contract to implement high-level roles required for performing

critical mechanisms, with each privilege role allowing more than one address to hold (code snippet 16.2).

We observed that the mint function allows accounts holding the MINTER_ROLE to execute it (L229 in

the code snippet 16.1). However, we also identified a potential risk that the DEAFULT_ADMIN_ROLE can
mistakenly assign the MINTER_ROLE to an incorrect account that was not intended to have it.

Consequently, if that account directly invokes the mint function, it would result in the direct minting
of the token without the required permission and lead to unexpected consequences.

CSKNFT.sol

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

function mint(

address _userAddr,

string calldata metadata,

MintType _mintType

) external onlyRole(MINTER_ROLE) {

if (_mintType == MintType.Mint) {

require(

block.timestamp >= mintDates.MINT_START_DATE,

"not started."

);

require(block.timestamp <= mintDates.MINT_END_DATE, "ended.");

} else if (_mintType == MintType.Whitelist) {

require(

block.timestamp >= mintDates.START_WHITELIST,

"Wl not started."

);

require(block.timestamp <= mintDates.END_WHITELIST, "Wl ended.");

} else if (_mintType == MintType.Waitlist) {

require(

PUBLIC 64

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

block.timestamp >= mintDates.START_WAITLIST,

"Waitlist not started."

);

require(

block.timestamp <= mintDates.END_WAITLIST,

"Waitlist ended."

);

}

delMint(_userAddr, metadata);

emit MintNft(

_userAddr,

tokenIdCounter.current(),

block.timestamp,

_mintType

);

}

Listing 16.1 The mint function of the CSKNFT contract

AccessControl.sol

50

51

52

53

54

55

struct RoleData {

mapping(address => bool) members;

bytes32 adminRole;

}

mapping(bytes32 => RoleData) private _roles;

Listing 16.2 The RoleData struct of the AccessControl contract

Recommendations

We recommend introducing the cskGen address variable to store the CSKGen contract address along
with its setter function (the setCSKGen function) and restricting the mint function to only be called
by the CSKGen contract as shown in the code snippet below.

Furthermore, we suggest governing the setCSKGen function with the TIMELOCK_DEV_ROLE. The

TIMELOCK_DEV_ROLE is assigned as the only role authorized to execute the associated functions. This

would improve the transparency and trustworthiness of privileged operations.

For more information about the usage of the TIMELOCK_DEV_ROLE, please refer to issue #9 -
Recommended Improvements for Transparency and Trustworthiness.

PUBLIC 65

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

31

40

41

42

43

44

45

46

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

243

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

address public cskGen;

// (...SNIPPED...)

constructor()

ERC721("CodeSekaiNFT", "CSKI")

EIP712(SIGNING_DOMAIN, SIGNATURE_VERSION)

{

_grantRole(DEFAULT_ADMIN_ROLE, msg.sender);

_grantRole(DEV_ROLE, msg.sender);

}

// (...SNIPPED...)

function mint(

address _userAddr,

string calldata metadata,

MintType _mintType

) external {

require(cskGen == _msgSender(), "permission denied");

if (_mintType == MintType.Mint) {

require(

block.timestamp >= mintDates.MINT_START_DATE,

"not started."

);

require(block.timestamp <= mintDates.MINT_END_DATE, "ended.");

} else if (_mintType == MintType.Whitelist) {

require(

block.timestamp >= mintDates.START_WHITELIST,

"Wl not started."

);

require(block.timestamp <= mintDates.END_WHITELIST, "Wl ended.");

} else if (_mintType == MintType.Waitlist) {

require(

block.timestamp >= mintDates.START_WAITLIST,

"Waitlist not started."

);

require(

block.timestamp <= mintDates.END_WAITLIST,

"Waitlist ended."

);

}

delMint(_userAddr, metadata);

emit MintNft(

_userAddr,

tokenIdCounter.current(),

PUBLIC 66

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

262

263

264

265

281

282

283

284

285

286

287

288

289

block.timestamp,

_mintType

);

}

// (...SNIPPED...)

function setCSKGen(uint256 newCSKGen)

public

onlyRole(TIMELOCK_DEV_ROLE)

{

require(newCSKGen != address(0), "Invalid address");

address prevCSKGen = cskGen;

cskGen = newCSKGen;

emit SetCSKGen(prevCSKGen, newCSKGen);

}

Listing 16.3 The improved mint function and the associated functions.

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 67

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 17 Possibly Setting Improper Period For Each Minting Round

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 197 - 212

Detailed Issue

The CSKNFT contract has separate periods Whitelist, Waitlist, and Mint, respectively, the difference in
period affects the difference in time to access and fee for minting.

Thus the period should follow the list below

1. These periods should be in the proper order
2. The periods should not overlap with other periods
3. Within the period, the end time should be greater than the start time

However, we found that the setPeriods function (L197 - 212 in the code snippet below) allows the

DEV_ROLE to mistakenly set time without following the list above, which leads to creating an unfairness for

the platform users.

For example, mistakenly set the Waitlist time before the Whitelist time.

CSKNFT.sol

197

198

199

200

201

202

203

204

205

206

207

208

209

210

function setPeriods(

MintType _mintType,

uint256 startDate,

uint256 _endTime

) public onlyRole(DEV_ROLE) {

if (_mintType == MintType.Mint) {

mintDates.MINT_START_DATE = startDate;

mintDates.MINT_END_DATE = _endTime;

} else if (_mintType == MintType.Whitelist) {

mintDates.START_WHITELIST = startDate;

mintDates.END_WHITELIST = _endTime;

} else if (_mintType == MintType.Waitlist) {

mintDates.START_WAITLIST = startDate;

mintDates.END_WAITLIST = _endTime;

PUBLIC 68

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

211

212

}

}

Listing 17.1 The setPeriods function that allows setting the improper period

Recommendations

Since the original design of the setPeriods function allows the DEV_ROLE to mistakenly set time (as

described above), we recommend revising the setPeriods function to follow the criteria listed below to fix this

issue.

1. The periods should be in the proper order

2. The periods should not overlap with another

3. Within each period, the end time should be greater than the start time

CSKNFT.sol

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

function setPeriods(

uint256 startWhitelistTime,

uint256 endWhitelistTime,

uint256 startWaitlistTime,

uint256 endWaitlistTime,

uint256 startMintTime,

uint256 endMintTime,

) public onlyRole(TIMELOCK_DEV_ROLE) {

require(endWhitelistTime > startWhitelistTime, "invalid whitelist time");

require(endWaitlistTime > startWaitlistTime, "invalid waitlist time");

require(endMintTime > startMintTime, "invalid mint time");

require((endWhitelistTime < startWaitlistTime) && (endWaitlistTime <

startMintTime), "invalid periods");

mintDates.START_WHITELIST = startWhitelistTime;

mintDates.END_WHITELIST = endWhitelistTime;

mintDates.START_WAITLIST = startWaitlistTime;

mintDates.END_WAITLIST = endWaitlistTime;

mintDates.MINT_START_DATE = startMintTime;

mintDates.MINT_END_DATE = endMintTime;

}

Listing 17.2 The improved setPeriods function that checks the proper periods

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 69

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 70

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 18 Overpayment When Minting And Updating NFT

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations
CSKGen.sol: L: 190 - 228 (The genToken function)
CSKNFT.sol: L: 277 - 303 (The updateFlagStatus function)

Detailed Issue

The genToken and updateFlagStatus functions allow users to mint and update tokens, respectively. In order

to perform these actions, users are required to pay ethAmount amount for the genToken function (L223 in

the code snippet 18.1) and PORTAL_PRICE amount for the updateFlagStatus function (L293 in the code

snippet 18.2).

However, upon conducting our analysis, we discovered that there is a possibility of overpaying the
required amount due to the current require statement implemented in the genToken and
updateFlagStatus functions.

As a result, users can accidentally overpay the required amount, which may lead to the loss of overpaid

funds.

CSKGen.sol

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

PUBLIC 71

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value >= ethAmount, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 18.1 The genToken function of the CSKGen contract

CSKNFT.sol

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value >= PORTAL_PRICE, "Eth not enough.");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

PUBLIC 72

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

297

298

299

300

301

302

303

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 18.2 The updateFlagStatus function of the CSKNFT contract

Recommendations

We recommend making changes to the require statements in the genToken and updateFlagStatus functions.

Specifically, we suggest changing the require statements to receive only the exact amount required by the

functions.

By implementing these changes, we can ensure that the user pays the correct amount required for the

functions to execute and prevent any overpayments.

CSKGen.sol

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

function genToken(MintInfo calldata info) external payable nonReentrant {

uint256 ethAmount;

MintType mintType;

require(block.timestamp <= info.timestamp + 1 minutes, "Times out");

require(info.minter == msg.sender, "not minter");

//verify

address signer = _verify(info);

require(signer == signWallet, "not signed");

if (info.mintType == 0) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true,

"not whitelist"

); //wl

ethAmount = WHITELIST_PRICE;

mintType = MintType.Whitelist;

} else if (info.mintType == 1) {

require(mintTotalCount[msg.sender].WlRound == 0, "Wl Minted");

require(

wlLists[MintType.Whitelist][msg.sender] == true ||

wlLists[MintType.Waitlist][msg.sender] == true,

"not waitlist"

);

ethAmount = WAITLIST_PRICE;

PUBLIC 73

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

216

217

218

219

220

221

222

223

224

225

226

227

228

mintType = MintType.Waitlist;

} else if (info.mintType == 2) {

require(mintTotalCount[msg.sender].PbRound == 0, "Pb Minted");

ethAmount = MINT_PRICE;

mintType = MintType.Mint;

}

require(msg.value == ethAmount, "Invalid Amount");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed to send Ether");

loopGenToken(mintType, info.metadata);

}

Listing 18.3 The improved genToken function of the CSKGen contract

CSKNFT.sol

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

function updateFlagStatus(SignInfo calldata _info)

external

payable

nonReentrant

{

require(ownerOf(_info.tokenId) == msg.sender, "Not Owner.");

require(

tokenInfo[_info.tokenId].isAvailable != _info.status,

"Same status."

);

//verify

address signer = _verify(_info);

require(signer == signWallet, "not signed");

if (_info.status) {

require(msg.value == PORTAL_PRICE, "Invalid Amount");

(bool sent,) = adminWallet.call{value: msg.value}("");

require(sent, "Failed send");

tokenInfo[_info.tokenId].metadata = _info.metadata;

}

tokenInfo[_info.tokenId].isAvailable = _info.status;

emit ChangeItemStatus(msg.sender, _info);

}

Listing 18.4 The improved updateFlagStatus function of the CSKNFT contract

PUBLIC 74

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 75

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 19 Lack Of Validating Input Parameters

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations Several functions throughout multiple contracts

Detailed Issue

We found that the CSKGen and CSKNFT contracts have several crucial states that can be set by the setter

functions. However, we noticed that these setter functions lack input parameter validation, which could

potentially lead to issues with the contract's functionality.

● The CSKGen contract with no validating zero address functions

○ The constructor function

○ The setSingWallet function

○ The setRandomWorker function

● The CSKNFT contract with no validating zero address functions

○ The initialize function

○ The setAdminWallet function

● The CSKNFT contract with no validating the function parameter

○ The setBaseURI function

PUBLIC 76

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend validating all input parameters for the setter functions in the CSKGen and CSKNFT

contracts. This is crucial to prevent any unexpected behavior and ensure that the contracts would function as

intended.

Please apply the validations to the following functions:

● The CSKGen contract with no validating zero address functions

○ The constructor function

○ The setSingWallet function

○ The setRandomWorker function

● The CSKNFT contract with no validating zero address functions

○ The initialize function

○ The setAdminWallet function

● The CSKNFT contract with no validating the function parameter

○ The setBaseURI function

The example below shows how to validate the zero address and empty string.

CSKGen.sol

103

104

105

106

107

108

109

function setSingWallet(address _newSignWallet)

public

onlyRole(DEV_ROLE)

{

require(_newSignWallet != address(0), "Invalid _newSignWallet address");

signWallet = _newSignWallet;

}

Listing 19.1 The example of validating the zero address

CSKNFT.sol

133

134

135

136

137

138

139

function setBaseURI(string memory _baseTokenURI)

public

onlyRole(DEFAULT_ADMIN_ROLE)

{

require(bytes(_baseTokenURI).length != 0, "Invalid _baseTokenURI");

baseTokenURI = _baseTokenURI;

}

Listing 19.2 The example of validating empty string for setBaseURI function

PUBLIC 77

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 78

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 20 Compiler Is Not Locked To Specific Version

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations
CSKGen: L2
CSKNFT: L2

Detailed Issue

We found that the smart contracts in this project should be deployed with the compiler version used in the

development and testing process.

The compiler version that is not strictly locked via the pragma statement may make the contract incompatible

against unforeseen circumstances.

List of smart contracts that should lock to the specific version.

● CSKGen.sol
● CSKNFT.sol

An example code that is not locked to a specific version (e.g., using => or ^ directive) is shown below.

CSKGen.sol

1

2

// SPDX-License-Identifier: CODESEKAI

pragma solidity ^0.8.0;

Listing 20.1 The CSKGen contract

Recommendations

We recommend locking the pragma version like the example code snippet below.

pragma solidity 0.8.19;
// or
pragma solidity =0.8.19;

PUBLIC 79

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

contract SemVerFloatingPragmaFixed {

}

Reference: https://swcregistry.io/docs/SWC-103

Reassessment

The CodeSekai team locked the pragma version to v0.8.19.

PUBLIC 80

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 21 Compiler May Be Susceptible To Publicly Disclosed Bugs

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations
CSKGen: L2
CSKNFT: L2

Detailed Issue

The CSKGen and CSKNFT smart contracts use an outdated Solidity compiler version (v0.8.0) which may be

susceptible to publicly disclosed vulnerabilities. The latest compiler patch version is 0.8.19, which contains

the list of known bugs as the following link:

https://docs.soliditylang.org/en/v0.8.19/bugs.html

The known bugs may not directly lead to the vulnerability, but it may increase an opportunity to trigger some

attacks further.

An example smart contract that does not use the latest patch version is shown below.

CSKGen.sol

1

2

// SPDX-License-Identifier: CODESEKAI

pragma solidity ^0.8.0;

Listing 21.1 An example smart contract that does not use the latest patch version (v0.8.19)

Recommendations

We recommend using the latest patch version, v0.8.19, that fixes all known bugs.

Reassessment

The CodeSekai team fixed this issue by employing the patch version v0.8.19.

PUBLIC 81

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 22 Arbitrarily Setting NFT Minting Prices

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 110 - 121 (The setPrice function)

Detailed Issue

We found that the setPrice function of the CSKGen contract allows for the arbitrary setting of the price values

for minting NFTs. If the DEV_ROLE account sets the price values incorrectly, it could lead to an unfair price

for the minting process.

Additionally, the current implementation of the function does not adhere to the fair price formula of

MINT_PRICE > WAITLIST_PRICE >= WHITELIST_PRICE, which could potentially give an unfair advantage

to some minters and affect the overall fairness of the minting process.

CSKGen.sol

39

40

41

110

111

112

113

114

115

116

117

118

119

120

121

uint256 public MINT_PRICE = 0.11 ether;

uint256 public WHITELIST_PRICE = 0.08 ether;

uint256 public WAITLIST_PRICE = 0.08 ether;

// (...SNIPPED...)

function setPrice(MintType _mintType, uint256 newPrice)

public

onlyRole(DEV_ROLE)

{

if (_mintType == MintType.Mint) {

MINT_PRICE = newPrice;

} else if (_mintType == MintType.Whitelist) {

WHITELIST_PRICE = newPrice;

} else if (_mintType == MintType.Waitlist) {

WAITLIST_PRICE = newPrice;

}

}

Listing 22.1 The setPrice function of the CSKGen contract

PUBLIC 82

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend updating the setPrice function to enforce the fairness price formula of MINT_PRICE >
WAITLIST_PRICE >= WHITELIST_PRICE and ensuring that the maximum allowed value for the mint price

is not exceeded the MAXIMUM_MINT_PRICE constant as shown in the code snippet below.

This will ensure a fair price for each minting round and prevent any potential advantage for some minters.

CSKGen.sol

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

// set max price properly

uint256 public constant MAXIMUM_MINT_PRICE = 0.11 ether;

// (...SNIPPED...)

function setPrice(MintType _mintType, uint256 newPrice)

public

onlyRole(DEV_ROLE)

{

require(newPrice <= MAXIMUM_MINT_PRICE, "New mint price exceeds the maximum

allowed value");

if (_mintType == MintType.Mint) {

require(newPrice > WAITLIST_PRICE, "MINT_PRICE must be greater than

WAITLIST_PRICE");

MINT_PRICE = newPrice;

} else if (_mintType == MintType.Whitelist) {

require(newPrice <= WAITLIST_PRICE, "WHITELIST_PRICE must be less than

or equal to WAITLIST_PRICE");

WHITELIST_PRICE = newPrice;

} else if (_mintType == MintType.Waitlist) {

require(newPrice >= WHITELIST_PRICE && newPrice < MINT_PRICE,

"WAITLIST_PRICE must be between WHITELIST_PRICE and MINT_PRICE");

WAITLIST_PRICE = newPrice;

}

}

Listing 22.2 The improved setPrice function of the CSKGen contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 83

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 23 Potential Denial-Of-Service On The getUserTokenAndInfos Function

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 177 - 195

Detailed Issue

The getUserTokenAndInfos function (code snippet 23.1) is a getter function that facilitates retrieving a list of

user assets owned by a specific member by iterating through the user’s balance (L185 in the code snippet

23.1) to look up the token by the index.

The CodeSekai platform limits users to mint only two NFTs within the Whitelist or Waitlist round, and the

Public round. However, the users could invoke the native ERC721 functions (e.g. transferFrom,

safeTransferFrom) to transfer NFT themselves directly.

As a result, users could end up owning more than two NFTs, which could potentially cause a
denial-of-service issue when calling the getUserTokenAndInfos function.

Note that the getUserTokenAndInfos function is a getter function that might not consume gas for querying

data (when querying data from an off-chain service). However, the underlying of the EVM (Ethereum Virtual

Machine) node still counts in the gas being used by the call of the getUserTokenAndInfos function internally

to prevent a denial-of-service attack on the EVM node itself. Therefore, the EVM node can reject the request

if the querying process of the getUserTokenAndInfos function takes too much gas or takes too long to

process.

PUBLIC 84

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

CSKNFT.sol

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

function getUserTokenAndInfos(address userAddress)

public

view

returns (UserAsset[] memory)

{

uint256 balance = balanceOf(userAddress);

UserAsset[] memory userAssets = new UserAsset[](balance);

for (uint32 i = 0; i < uint32(balance); i++) {

uint256 tokenId = tokenOfOwnerByIndex(userAddress, i);

string memory metadata = tokenInfo[tokenId].metadata;

bool status = checkFlagStatus(tokenId);

userAssets[i].tokenId = tokenId;

userAssets[i].isAvailable = status;

userAssets[i].metadata = metadata;

}

return userAssets;

}

Listing 23.1 The getUserTokenAndInfos function that
is prone to the denial-of-service issue

Recommendations

One possible mitigating solution for this, we recommend adding a new function (overloaded function)
that applies the pagination concept.

We provide the recommended code to address this issue as a suggested remediation concept only.
The recommended code below should be used as a guideline to address this issue only. The
CodeSekai team should adjust the recommended code properly according to the business design.

CSKNFT.sol

324

325

326

327

328

329

330

331

332

333

334

function getUserTokenAndInfos(address userAddress, uint256 cursor, uint256

resultsPerPage)

public

view

returns (UserAsset[] memory userAssets, uint256 newCursor)

{

uint256 balances = balanceOf(userAddress);

require(cursor <= balances, "cursor is out of range");

require(resultsPerPage > 0, "resultsPerPage cannot be 0");

uint256 length = resultsPerPage;

if (length > balances - cursor) {

PUBLIC 85

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

length = balances - cursor;

}

userAssets = new UserAsset[](length);

for (uint256 i = 0; i < length; i++) {

uint256 tokenId = tokenOfOwnerByIndex(userAddress, cursor + i);

string memory metadata = tokenInfo[tokenId].metadata;

bool status = checkFlagStatus(tokenId);

userAssets[i].tokenId = tokenId;

userAssets[i].isAvailable = status;

userAssets[i].metadata = metadata;

}

return (userAssets, cursor + length);

}

Listing 23.2 The new getUserTokenAndInfosFrom function that
applies the pagination concept

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 86

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 24 Recommended Improving Transparency And Traceability Of Crucial Variables

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations
CSKGen.sol: L: 36, 37, 68, 69, 86, and 87
CSKNFT.sol: L: 29, 30, 32, 33, 37, 89, and 90

Detailed Issue

We found certain variables from various contracts are declared as private that could potentially result in a

lack of transparency and traceability. The mentioned variables are listed below:

● The CSKGen contract

○ The adminWallet address

○ The signWallet address

○ The SIGNING_DOMAIN string

○ The SIGNATURE_VERSION string

○ The wlLists mapping

○ The mintTotalCount mapping

● The CSKNFT contract

○ The adminWallet address

○ The signWallet address

○ The SIGNING_DOMAIN string

○ The SIGNATURE_VERSION string

○ The mintDates struct

○ The tokenInfo mapping

Recommendations

We recommend changing the declaration of the associated variables to public, in order to enhance

transparency and traceability.

PUBLIC 87

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team partially fixed this issue by enhancing the transparency and traceability of certain

associated variables.

However, The SIGNING_DOMAIN and SIGNATURE_VERSION variables in the CSKGen and CSKNFT

contracts have been kept private.

PUBLIC 88

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 25 Recommended Event Emissions For Transparency And Traceability

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations Several functions throughout multiple contracts

Detailed Issue

We consider operations of the following state-changing functions important and require proper event

emissions for improving transparency and traceability:

● The CSKGen contract

○ The setRandomWorker function

○ The setSingWallet function

○ The setPrice function

○ The setWhitelists function

○ The genToken function

● The CSKNFT contract

○ The setBaseURI function

○ The setPeriods function

○ The setAdminWallet function

○ The setPortalPrice function

Recommendations

We recommend emitting relevant events on the associated functions to improve transparency and

traceability.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 89

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 26 Lack Of Checking Availability Of The Token ID

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 140 - 142, and 144 - 150

Detailed Issue

The checkFlagStatus function (L140 - 142 in the code snippet below) allows retrieving the isAvailable

property by a specific token ID.

However, we found that this function lacks checking whether the token is minted before retrieving data,
which can lead to incorrect results when the token ID is not minted.

The same issue occurs in the checkMetadata function (L144 - 150 in the code snippet below) for retrieving

the metadata.

CSKNFT.sol

140

141

142

143

144

145

146

147

148

149

150

function checkFlagStatus(uint256 tokenId) public view returns (bool) {

return tokenInfo[tokenId].isAvailable;

}

function checkMetadata(uint256 tokenId)

public

view

returns (string memory)

{

return tokenInfo[tokenId].metadata;

}

Listing 26.1 The checkFlagStatus and checkMetadata functions of the CSKNFT contract

PUBLIC 90

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend invoking the _requireMinted function provided by the ERC721 contract to ensure that the

token ID is minted before retrieving data. This will prevent the return of incorrect results in case the token ID

is not minted.

CSKNFT.sol

140

141

142

143

144

145

146

147

148

149

150

151

152

function checkFlagStatus(uint256 tokenId) public view returns (bool) {

_requireMinted(tokenId);

return tokenInfo[tokenId].isAvailable;

}

function checkMetadata(uint256 tokenId)

public

view

returns (string memory)

{

_requireMinted(tokenId);

return tokenInfo[tokenId].metadata;

}

Listing 26.2 The improved checkFlagStatus and checkMetadata functions of the CSKNFT contract

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 91

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 27 Recommended Removing Unused Interfaces

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 4, and 5

Detailed Issue

We found that the CSKGen contract contains the unused IERC721 and IERC20 interface. These unused

interfaces could potentially cause confusion or misunderstandings among users or developers when

attempting to maintain or modify the source code.

Moreover, unused interfaces can also increase the complexity of the codebase and lead to unnecessary

computational overhead.

CSKGen.sol

4

5

import "@openzeppelin/contracts/token/ERC721/IERC721.sol";

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

Listing 27.1 The unused interfaces of the CSKGen contract

Recommendations

We recommend removing interfaces code from the smart contracts as it can reduce the contract’s complexity

and also help to reduce confusion among users or developers when maintaining the source code.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 92

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 28 Recommended Removing Unused Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations
CSKGen.sol

● L: 11 -15 (The IRANDOMWORKER interface)
● L: 35 (The IRANDOMWORKER variable)
● L: 96 - 101 (The setRandomWorker function)

Detailed Issue

The CSKGen contract introduces the IRANDOMWORKER interface that relies on an external contract.

However, it was observed that this external contract has not been utilized in the implementation of the

CSKGen contract, despite having a setter function (The setRandomWorker function).

This unused external contract may lead to confusion or potential errors for future maintainers or developers

of the source code.

CSKGen.sol

11

12

13

14

15

33

34

35

96

97

98

99

100

101

interface IRANDOMWORKER {

function getRandomNumber(uint256 tokenId, address _msgSender)

external

returns (string memory);

}

// (...SNIPPED...)

contract CSKGen is EIP712, AccessControl, ReentrancyGuard {

INFTCORE public nftCore;

IRANDOMWORKER private iRandomWorker;

// (...SNIPPED...)

function setRandomWorker(address _randomWokerAddr)

public

onlyRole(DEV_ROLE)

{

iRandomWorker = IRANDOMWORKER(_randomWokerAddr);

}

PUBLIC 93

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

229

// (...SNIPPED...)

}

Listing 28.1 The unused code of the CSKGen contract

Recommendations

We recommend removing unused code from the smart contracts as it can reduce the contract’s complexity

and also help to reduce confusion among users or developers when maintaining the source code.

Reassessment

The CodeSekai team adopted our recommended code to fix this issue.

PUBLIC 94

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 29 Recommended Removing Unused Imported Contract

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 8 and 21

Detailed Issue

The CSKNFT contract inherits and imports the Ownable contract, but the functionality of the Ownable

contract is not utilized in the CSKNFT contract.

The presence of this unused code might create confusion or misinterpretation among developers or users

who are trying to maintain or make changes to the source code.

CSKNFT.sol

8

15

16

17

18

19

20

21

22

23

24

322

import "@openzeppelin/contracts/access/Ownable.sol";

// (...SNIPPED...)

contract CSKNFT is

ERC721,

EIP712,

ERC721Enumerable,

ERC721Burnable,

AccessControl,

Ownable,

Initializable,

ReentrancyGuard

{

// (...SNIPPED...)

}

Listing 29.1 The unused imported contract of the CSKNFT contract

PUBLIC 95

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Recommendations

We recommend removing unused code from the smart contracts as it can reduce the contract’s complexity

and also help to reduce confusion among users or developers when maintaining the source code.

Reassessment

The CodeSekai team partially fixed this issue by removing certain unused codes since it is not feasible to

eliminate the use of an Ownable contract as Opensea relies on its functionality to import smart contracts to

the market.

PUBLIC 96

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 30 Misspelling Of Crucial Function Name

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKGen.sol

Locations CSKGen.sol L: 103

Detailed Issue

The setSingWallet function is a crucial function that enables accounts with DEV_ROLE to set the new signer

address. However, we found the misspelling function name of the setSingWallet function at line 103. This

misspelling can lead to misunderstanding among users or developers when maintaining the source code.

CSKGen.sol

103

104

105

106

107

108

function setSingWallet(address _newSignWallet)

public

onlyRole(DEV_ROLE)

{

signWallet = _newSignWallet;

}

Listing 30.1 The misspelled function name of the setSingWallet function

Recommendations

We recommend revising the misspelled function name of the setSingWallet function.

CSKGen.sol

103

104

105

106

107

108

function setSignWallet(address _newSignWallet)

public

onlyRole(DEV_ROLE)

{

signWallet = _newSignWallet;

}

Listing 30.2 The improved function name

PUBLIC 97

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 98

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 31 Recommended Adding Event Indexes

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/CSKNFT.sol

Locations CSKNFT.sol L: 92 - 97, 99

Detailed Issue

We found that the MintNft and ChangeItemStatus events being emitted in the contract do not have the

indexed modifier, which results in a lack of traceability and makes it difficult to search for specific
events in the event logs.

CSKNFT.sol

92

93

94

95

96

97

98

99

event MintNft(

address userAddress,

uint256 tokenId,

uint256 createdAt,

MintType _mintType

);

event ChangeItemStatus(address userAddress, SignInfo);

Listing 31.1 The MintNft and ChangeItemStatus events

Recommendations

We recommend adding the indexed modifier to the MintNft and ChangeItemStatus events in the contract to

improve traceability and facilitate more efficient searching of the event logs.

CSKNFT.sol

92

93

94

95

96

97

event MintNft(

address indexed userAddress,

uint256 indexed tokenId,

uint256 createdAt,

MintType indexed _mintType

);

PUBLIC 99

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

98

99 event ChangeItemStatus(address indexed userAddress, SignInfo);

Listing 31.1 The improved MintNft and ChangeItemStatus events

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The CodeSekai team fixed this issue as per our suggestion.

PUBLIC 100

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

No. 32 Recommended Enforcing Checks-Effects-Interactions Pattern

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/CSKGen.sol
contracts/CSKNFT.sol

Locations

CSKGen.sol L: 152 - 165 (The loopGenToken function)
CSKNFT.sol

● L: 214 - 223 (The delMint function)
● L: 277 - 303 (The updateFlagStatus function)

Detailed Issue

We noticed that the functions below do not follow the checks-effects-interactions pattern, which is the

best practice coding style to prevent potential reentrancy attacks.

List of functions that do not follow the checks-effects-interactions pattern.

● The loopGenToken function in the CSKGen contract

● The delMint function in the CSKNFT contract

● The updateFlagStatus function in the CSKNFT contract

Even if there are no reentrancy issues, we recommend that the list of functions above should enforce
the checks-effects-interactions pattern.

For example, in the code snippet below, the loopGenToken function invokes the external mint function

(interactions part) before updating the state variables (effects part).

CSKGen.sol

152

153

154

155

156

157

158

159

function loopGenToken(MintType _mintType, uint256 metadata) internal {

string memory results = Strings.toString(metadata);

if (_mintType == MintType.Mint) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Mint);

mintTotalCount[msg.sender].PbRound += 1;

} else if (_mintType == MintType.Whitelist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Whitelist);

PUBLIC 101

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

160

161

162

163

164

165

mintTotalCount[msg.sender].WlRound += 1;

} else if (_mintType == MintType.Waitlist) {

nftCore.mint(msg.sender, results, INFTCORE.MintType.Waitlist);

mintTotalCount[msg.sender].WlRound += 1;

}

}

Listing 32.1 The loopGenToken function that
does not follow the checks-effects-interactions pattern

Recommendations

We recommend enforcing the checks-effects-interactions pattern to all of the functions below.

● The loopGenToken function in the CSKGen contract

● The delMint function in the CSKNFT contract

● The updateFlagStatus function in the CSKNFT contract

The example below is how to fix this issue, we moved the interactions part (the loopGenToken function)
to get executed after the effects part.

CSKGen.sol

140

141

142

143

144

145

146

147

148

149

150

151

152

function loopGenToken(MintType _mintType, uint256 metadata) internal {

string memory results = Strings.toString(metadata);

if (_mintType == MintType.Mint) {

mintTotalCount[msg.sender].PbRound += 1;

nftCore.mint(msg.sender, results, INFTCORE.MintType.Mint);

} else if (_mintType == MintType.Whitelist) {

mintTotalCount[msg.sender].WlRound += 1;

nftCore.mint(msg.sender, results, INFTCORE.MintType.Whitelist);

} else if (_mintType == MintType.Waitlist) {

mintTotalCount[msg.sender].WlRound += 1;

nftCore.mint(msg.sender, results, INFTCORE.MintType.Waitlist);

}

}

Listing 32.2 The improved loopGenToken function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 102

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Reassessment

The CodeSekai team partially fixed this issue by enforcing the checks-effects-interactions pattern.

However, the delMint and updateFlagStatus functions still do not follow the checks-effects-interactions

pattern.

PUBLIC 103

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

Appendix

About Us

Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of

cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract

security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in the areas of private and

public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes

recommendations on smart contracts' security and gas optimization to bring the most benefit to users and

platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 104

Code Sekai - NFT Minting & Transferring In-game/Out-game - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 105

