
Aniverse
ANIV721Land
Smart Contract Audit Report

Date Issued: 21 Sep 2022

Version: Final v1.0

Aniverse - ANIV721Land - Smart Contract Audit

Table of Contents

Executive Summary 3
Overview 3
About ANIV721Land 3
Scope of Work 3
Auditors 5
Disclaimer 5
Audit Result Summary 6

Methodology 7
Audit Items 8
Risk Rating 10

Findings 11
Review Findings Summary 11
Detailed Result 13

Appendix 67
About Us 67
Contact Information 67
References 68

PUBLIC 2

Aniverse - ANIV721Land - Smart Contract Audit

Executive Summary

Overview

Valix conducted a smart contract audit to evaluate potential security issues of the ANIV721Land. This audit

report was published on 21 Sep 2022. The audit scope is limited to the ANIV721Land. Our security best

practices strongly recommend that the Aniverse team conduct a full security audit for both on-chain and

off-chain components of its infrastructure and their interaction. A comprehensive examination has been

performed during the audit process utilizing Valix’s Formal Verification, Static Analysis, and Manual Review

techniques.

About ANIV721Land

Land of Aniverse is a land located on a Metaverse the land at Aniverse has a total of 250,000 blocks, which

is the first map that focuses on the development of education that has divided the area for the large-scale

study of many institutions.

Scope of Work

The security audit conducted does not replace the full security audit of the overall Aniverse protocol. The

scope is limited to the ANIV721Land and its related smart contracts.

The security audit covered the components at this specific state:

Item Description

Components
▪ ANIV721Land smart contract

▪ Imported associated smart contracts and libraries

Git Repository
▪ https://github.com/CREATIVE-DIGITAL-LIVING-CO-LTD/SC_ERC721_

LAND

Audit Commit ▪ f2412b75689d1187be208a291f31f7ca4e7aa61a (branch: dev)

Reassessment Commit
▪ 134c5c5445ff08c8390918aea5cffe92710565e7

(branch: features/audit)

Audited Files/Contracts ▪ ./contracts/ANIV721Land.sol

PUBLIC 3

Aniverse - ANIV721Land - Smart Contract Audit

▪ ./contracts/Operator.sol

▪ ./contracts/erc721/ERC721Tradable.sol

▪ ./contracts/erc721/common/meta-transactions/ContextMixin.sol

▪ ./contracts/erc721/common/meta-transactions/EIP712Base.sol

▪ ./contracts/erc721/common/meta-transactions/Initializable.sol

▪ ./contracts/erc721/common/meta-transactions/NativeMetaTransaction.

sol

▪ ProxyRegistry contract (prototype implementation)

▪ Other imported associated Solidity files

Excluded Files/Contracts
▪ ./contracts/test/MockProxyRegistry.sol

▪ ProxyRegistry contract (complete implementation)

Remark: Our security best practices strongly recommend that the Aniverse team conduct a full security audit

for both on-chain and off-chain components of its infrastructure and the interaction between them.

PUBLIC 4

Aniverse - ANIV721Land - Smart Contract Audit

Auditors

Role Staff List

Auditors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Authors

Anak Mirasing
Atitawat Pol-in
Kritsada Dechawattana
Parichaya Thanawuthikrai
Phuwanai Thummavet

Reviewers Sumedt Jitpukdebodin

Disclaimer

Our smart contract audit was conducted over a limited period and was performed on the smart contract at a

single point in time. As such, the scope was limited to current known risks during the work period. The review

does not indicate that the smart contract and blockchain software has no vulnerability exposure.

We reviewed the security of the smart contracts with our best effort, and we do not guarantee a hundred

percent coverage of the underlying risk existing in the ecosystem. The audit was scoped only in the provided

code repository. The on-chain code is not in the scope of auditing.

This audit report does not provide any warranty or guarantee, nor should it be considered an “approval” or

“endorsement” of any particular project. This audit report should also not be used as investment advice nor

provide any legal compliance.

PUBLIC 5

Aniverse - ANIV721Land - Smart Contract Audit

Audit Result Summary

From the audit results and the remediation and response from the developer, Valix trusts that the

ANIV721Land has sufficient security protections to be safe for use.

21 Sep 2022

Initially, Valix was able to identify 22 issues that were categorized from the “Critical” to “Informational” risk

level in the given timeframe of the assessment. For the reassessment, the Aniverse team fixed 18
issues. Other issues were partially fixed and acknowledged. Below is the breakdown of the

vulnerabilities found and their associated risk rating for each assessment conducted.

Target
Assessment Result Reassessment Result

C H M L I C H M L I

ANIV721Land - 2 8 8 4 - 1 2 1 1

Note: Risk Rating C Critical, H High, M Medium, L Low, I Informational

PUBLIC 6

Aniverse - ANIV721Land - Smart Contract Audit

Methodology

The smart contract security audit methodology is based on Smart Contract Weakness Classification and Test

Cases (SWC Registry), CWE, well-known best practices, and smart contract hacking case studies. Manual

and automated review approaches can be mixed and matched, including business logic analysis in terms of

the malicious doer's perspective. Using automated scanning tools to navigate or find offending software

patterns in the codebase along with a purely manual or semi-automated approach, where the analyst

primarily relies on one's knowledge, is performed to eliminate the false-positive results.

Planning and Understanding

● Determine the scope of testing and understanding of the application’s purposes and workflows.

● Identify key risk areas, including technical and business risks.

● Determine which sections to review within the resource constraints and review method – automated,
manual or mixed.

Automated Review

● Adjust automated source code review tools to inspect the code for known unsafe coding patterns.

● Verify the tool's output to eliminate false-positive results, and adjust and re-run the code review tool if
necessary.

Manual Review

● ​​Analyzing the business logic flaws requires thinking in unconventional methods.

● Identify unsafe coding behavior via static code analysis.

Reporting

● Analyze the root cause of the flaws.

● Recommend improvements for secure source code.

PUBLIC 7

Aniverse - ANIV721Land - Smart Contract Audit

Audit Items

We perform the audit according to the following categories and test names.

Category ID Test Name

Security Issue

SEC01 Authorization Through tx.origin

SEC02 Business Logic Flaw

SEC03 Delegatecall to Untrusted Callee

SEC04 DoS With Block Gas Limit

SEC05 DoS with Failed Call

SEC06 Function Default Visibility

SEC07 Hash Collisions With Multiple Variable Length Arguments

SEC08 Incorrect Constructor Name

SEC09 Improper Access Control or Authorization

SEC10 Improper Emergency Response Mechanism

SEC11 Insufficient Validation of Address Length

SEC12 Integer Overflow and Underflow

SEC13 Outdated Compiler Version

SEC14 Outdated Library Version

SEC15 Private Data On-Chain

SEC16 Reentrancy

SEC17 Transaction Order Dependence

SEC18 Unchecked Call Return Value

SEC19 Unexpected Token Balance

SEC20 Unprotected Assignment of Ownership

SEC21 Unprotected SELFDESTRUCT Instruction

SEC22 Unprotected Token Withdrawal

SEC23 Unsafe Type Inference

SEC24 Use of Deprecated Solidity Functions

SEC25 Use of Untrusted Code or Libraries

SEC26 Weak Sources of Randomness from Chain Attributes

SEC27 Write to Arbitrary Storage Location

PUBLIC 8

Aniverse - ANIV721Land - Smart Contract Audit

Category ID Test Name

Functional Issue

FNC01 Arithmetic Precision

FNC02 Permanently Locked Fund

FNC03 Redundant Fallback Function

FNC04 Timestamp Dependence

Operational Issue

OPT01 Code With No Effects

OPT02 Message Call with Hardcoded Gas Amount

OPT03 The Implementation Contract Flow or Value and the Document is
Mismatched

OPT04 The Usage of Excessive Byte Array

OPT05 Unenforced Timelock on An Upgradeable Proxy Contract

Developmental Issue

DEV01 Assert Violation

DEV02 Other Compilation Warnings

DEV03 Presence of Unused Variables

DEV04 Shadowing State Variables

DEV05 State Variable Default Visibility

DEV06 Typographical Error

DEV07 Uninitialized Storage Pointer

DEV08 Violation of Solidity Coding Convention

DEV09 Violation of Token (ERC20) Standard API

PUBLIC 9

Aniverse - ANIV721Land - Smart Contract Audit

Risk Rating

To prioritize the vulnerabilities, we have adopted the scheme of five distinct levels of risk: Critical, High,

Medium, Low, and Informational, based on OWASP Risk Rating Methodology. The risk level definitions are

presented in the table.

Risk Level Definition

Critical
The code implementation does not match the specification, and it could disrupt the

platform.

High
The code implementation does not match the specification, or it could result in losing

funds for contract owners or users.

Medium
The code implementation does not match the specification under certain conditions, or it

could affect the security standard by losing access control.

Low
The code implementation does not follow best practices or use suboptimal design

patterns, which may lead to security vulnerabilities further down the line.

Informational
Findings in this category are informational and may be further improved by following best

practices and guidelines.

The risk value of each issue was calculated from the product of the impact and likelihood values, as

illustrated in a two-dimensional matrix below.

● Likelihood represents how likely a particular vulnerability is exposed and exploited in the wild.

● Impact measures the technical loss and business damage of a successful attack.

● Risk demonstrates the overall criticality of the risk.

Likelihood
Impact High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Informational

The shading of the matrix visualizes the different risk levels. Based on the acceptance criteria, the risk levels

"Critical" and "High" are unacceptable. Any issue obtaining the above levels must be resolved to lower the

risk to an acceptable level.

PUBLIC 10

Aniverse - ANIV721Land - Smart Contract Audit

Findings

Review Findings Summary

The table below shows the summary of our assessments.

No. Issue Risk Status Functionality is
in use

1 Possibly Bypassing Token Transfer Verification
Mechanism High Fixed In use

2 Incorrect Logical Design Of Token Transfer
Verification Mechanism High Acknowledged In use

3 Denial-Of-Service On Operator Revoking Process Medium Fixed In use

4 Possibly Permanent Ownership Removal Medium Fixed In use

5 Unsafe Ownership Transfer Medium Fixed In use

6 Recommended Adding A Setter Function For Proxy
Registry Address Medium Partially Fixed In use

7 Lack Of Deadline For Meta Transactions Medium Acknowledged In use

8 Possibly Bypassing Token Disapproval Mechanism Medium Fixed In use

9 Possible Cross-Chain Replay Attack Over Meta
Transactions Medium Fixed In use

10 Recommended Changing Visibility Of State
Variables For Transparency Medium Fixed In use

11 Potential Approval Of Duplicated Token IDs Low Fixed In use

12 Lack Of Clearing Land Approval Array Of Revoked
Operator Low Fixed In use

13 Possibly Incorrect Token Disapproval Low Fixed In use

14 Recommended Adding A Setter Function For Base
Token URI Low Partially Fixed In use

15 Recommended Event Emissions For Transparency
And Traceability Low Fixed In use

16 Possibly Minting Out-Of-Bound Token ID Low Fixed In use

17 Lack Of Validating Existence Of Token ID Low Fixed In use

PUBLIC 11

Aniverse - ANIV721Land - Smart Contract Audit

18 Recommended Removing Redundant Logic Low Fixed In use

19 Inconsistent Error Message With The Code Informational Fixed In use

20 Recommended Removing Unused State Variable Informational Fixed In use

21 Inconsistent Contract Name Informational Fixed In use

22 Depending On External Contract Informational Acknowledged In use

The statuses of the issues are defined as follows:

Fixed: The issue has been completely resolved and has no further complications.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue’s risk has been reported and acknowledged.

PUBLIC 12

Aniverse - ANIV721Land - Smart Contract Audit

Detailed Result

This section provides all issues that we found in detail.

No. 1 Possibly Bypassing Token Transfer Verification Mechanism

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 135 - 144

Detailed Issue

We discovered that the _beforeTokenTransfer function (L135 - 144 in code snippet 1.1) is vulnerable to

bypassing a token transfer verification mechanism when an Aniverse operator transfers a token to itself. The

root cause of this issue is that the function uses msg.sender to get a function caller. Since the ANIV721Land

contract supports meta transactions, adopting the msg.sender, in this case, can cause the bypassing issue.

Consider the following scenario to understand this issue.

1. Assuming that an Aniverse operator Eve got approval to operate on the TokenA.

2. Eve signs a meta transaction for transferring the TokenA to herself.

3. Eve submits the signed meta transaction payload to the

NativeMetaTransaction.executeMetaTransaction() function (L33 - 67 in code snippet 1.2).

4. The executeMetaTransaction function verifies the payload and executes the target

ERC721.transferFrom(TokenA’s owner address, Eve address, TokenA’s id) function (L150 - 159

in code snippet 1.3).

5. The transferFrom function verifies a transfer approval and executes the internal

ERC721._transfer(TokenA’s owner address, Eve address, TokenA’s id) function (L158 in code

snippet 1.3).

6. The _transfer function invokes the ERC721Tradable._beforeTokenTransfer(TokenA’s owner
address, Eve address, TokenA’s id) function (L339 in code snippet 1.3).

PUBLIC 13

Aniverse - ANIV721Land - Smart Contract Audit

7. The _beforeTokenTransfer function’s execution flow enters the operator’s token transfer verification

(L140 - 142 in code snippet 1.1) because the “to” variable is pointing to Eve who is an Aniverse

operator.

At this point, the operator’s token transfer verification mechanism would be bypassed since the

msg.sender (L141) would demonstrate that the function caller is the contract itself (i.e., this
address), not the operator Eve.

8. The _transfer function transfers the TokenA to Eve without permission.

ERC721Tradable.sol

135

136

137

138

139

140

141

142

143

144

function _beforeTokenTransfer(

address from,

address to,

uint256 tokenId

) internal virtual override {

if (isOperator(to)) {

require(msg.sender != to, "Operator can't transfer to itself");

}

super._beforeTokenTransfer(from, to, tokenId);

}

Listing 1.1 The vulnerable _beforeTokenTransfer function

NativeMetaTransaction.sol

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

function executeMetaTransaction(

address userAddress,

bytes memory functionSignature,

bytes32 sigR,

bytes32 sigS,

uint8 sigV

) public payable returns (bytes memory) {

MetaTransaction memory metaTx = MetaTransaction({

nonce: nonces[userAddress],

from: userAddress,

functionSignature: functionSignature

});

require(

verify(userAddress, metaTx, sigR, sigS, sigV),

"Signer and signature do not match"

);

// increase nonce for user (to avoid re-use)

nonces[userAddress] = nonces[userAddress].add(1);

PUBLIC 14

Aniverse - ANIV721Land - Smart Contract Audit

54

55

56

57

58

59

60

61

62

63

64

65

66

67

emit MetaTransactionExecuted(

userAddress,

payable(msg.sender),

functionSignature

);

// Append userAddress and relayer address at the end to extract it from

calling context

(bool success, bytes memory returnData) = address(this).call(

abi.encodePacked(functionSignature, userAddress)

);

require(success, "Function call not successful");

return returnData;

}

Listing 1.2 The executeMetaTransaction function that allows anyone to
submit a meta transaction to invoke ANIV721Land contract’s functions

ERC721.sol

150

151

152

153

154

155

156

157

158

159

331

332

333

334

335

336

337

338

339

340

341

342

343

344

function transferFrom(

address from,

address to,

uint256 tokenId

) public virtual override {

//solhint-disable-next-line max-line-length

require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller

is not owner nor approved");

_transfer(from, to, tokenId);

}

// (...SNIPPED...)

function _transfer(

address from,

address to,

uint256 tokenId

) internal virtual {

require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect

owner");

require(to != address(0), "ERC721: transfer to the zero address");

_beforeTokenTransfer(from, to, tokenId);

// Clear approvals from the previous owner

_approve(address(0), tokenId);

_balances[from] -= 1;

PUBLIC 15

Aniverse - ANIV721Land - Smart Contract Audit

345

346

347

348

349

350

351

_balances[to] += 1;

_owners[tokenId] = to;

emit Transfer(from, to, tokenId);

_afterTokenTransfer(from, to, tokenId);

}

Listing 1.3 The transferFrom and _transfer functions of the ERC721 contract

Recommendations

We recommend calling the _msgSender function (L141 in the code snippet below) instead of using the

msg.sender to get a legitimate function caller.

ERC721Tradable.sol

135

136

137

138

139

140

141

142

143

144

function _beforeTokenTransfer(

address from,

address to,

uint256 tokenId

) internal virtual override {

if (isOperator(to)) {

require(_msgSender() != to, "Operator can't transfer to itself");

}

super._beforeTokenTransfer(from, to, tokenId);

}

Listing 1.4 The improved _beforeTokenTransfer function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue according to our suggestion.

PUBLIC 16

Aniverse - ANIV721Land - Smart Contract Audit

No. 2 Incorrect Logical Design Of Token Transfer Verification Mechanism

Risk High
Likelihood Medium

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 135 - 144

Detailed Issue

The _beforeTokenTransfer function was implemented to verify that an Aniverse operator would not be able to

transfer any token to itself (L140 - 142 in code snippet 2.1). The _beforeTokenTransfer function would

automatically be invoked every time when a token is being transferred by the _transfer function (L339 in

code snippet 2.2).

Nonetheless, we noticed that this operator’s token transfer verification mechanism is not practically effective.

More specifically, an Aniverse operator can easily bypass this mechanism by transferring a token to
another operator and then making a transfer back to itself, or even transferring a token to its
personal wallet.

ERC721Tradable.sol

135

136

137

138

139

140

141

142

143

144

function _beforeTokenTransfer(

address from,

address to,

uint256 tokenId

) internal virtual override {

if (isOperator(to)) {

require(msg.sender != to, "Operator can't transfer to itself");

}

super._beforeTokenTransfer(from, to, tokenId);

}

Listing 2.1 The _beforeTokenTransfer function that would not allow
an Aniverse operator to transfer any token to itself

PUBLIC 17

Aniverse - ANIV721Land - Smart Contract Audit

ERC721.sol

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

function _transfer(

address from,

address to,

uint256 tokenId

) internal virtual {

require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect

owner");

require(to != address(0), "ERC721: transfer to the zero address");

_beforeTokenTransfer(from, to, tokenId);

// Clear approvals from the previous owner

_approve(address(0), tokenId);

_balances[from] -= 1;

_balances[to] += 1;

_owners[tokenId] = to;

emit Transfer(from, to, tokenId);

_afterTokenTransfer(from, to, tokenId);

}

Listing 2.2 The _transfer function that calls the _beforeTokenTransfer function
to verify the operator’s token transfer

Recommendations

We recommend re-designing and re-implementing the logic for verifying a token transfer by an Aniverse

operator by taking all possible bypassing cases into account.

Reassessment

The Aniverse team acknowledged this issue and decided to retain the original code and design. However,

the Aniverse team would enforce a law on all Aniverse operators to prevent them from such abusing

transactions.

PUBLIC 18

Aniverse - ANIV721Land - Smart Contract Audit

No. 3 Denial-Of-Service On Operator Revoking Process

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 119 - 125

Detailed Issue

The ERC721Tradable contract has the revokeOperator function (L119 - 125 in the code snippet below) for

revoking an Aniverse operator.

We noticed that the revokeOperator function would disapprove all token approvals of a revoking operator. At

this point, we are concerned that the token disapproval process could consume gas beyond the block gas

limit, leading to a denial-of-service issue.

To elaborate, the revokeOperator function uses the for-loop (L122 - 124) to disapprove all token approvals.

Imagine the case that the length of the _tokenId array is too large; the function would consume gas beyond

the block gas limit.

As a result, the revoking transaction would be reverted. In other words, the contract owner would not be able

to revoke that operator anyhow.

ERC721Tradable.sol

119

120

121

122

123

124

125

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

}

}

Listing 3.1 The revokeOperator function

PUBLIC 19

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend re-designing and re-implementing the revokeOperator function by taking the

denial-of-service issue into consideration.

Reassessment

The Aniverse team remediated this issue by limiting the length of the token approval array for each operator

on the _addLandToOperator function (L137 in the code snippet below). The approval limit is controlled by

the maxOperatorLand variable and this variable can be updated by way of invoking the setMaxOperatorLand

function (L181 - 186).

Note that, the default value of the token length limit is 600 (L46) whereas the maximum value is 1000 (L47).

These values have been tested and confirmed by the Aniverse team that they are not too large to exceed the

block gas limit of the blockchain network they would like to deploy the contract to.

ERC721Tradable.sol

46

47

132

133

134

135

136

137

138

139

140

141

142

143

144

145

181

182

183

184

uint256 public maxOperatorLand = 600;

uint256 public immutable MAX_VALUE_OPERATOR_LAND = 1000;

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

require(!_operatorTokenApproval[to][tokenId], "Token id was approved");

uint256[] storage _tokenId = _operatorLandApproval[to];

require(_tokenId.length < maxOperatorLand, "Current operator has maxed

land");

if (getApproved(tokenId) != address(0)) {

_operatorTokenApproval[getApproved(tokenId)][tokenId] = false;

}

_tokenId.push(tokenId);

_operatorTokenApproval[to][tokenId] = true;

emit AddLandToOperator(tokenId, to);

}

// (...SNIPPED...)

function setMaxOperatorLand(uint256 _newMaxOperatorLand) external onlyOwner {

require(_newMaxOperatorLand > 0 && _newMaxOperatorLand <=

MAX_VALUE_OPERATOR_LAND, "Operator must be operate lands between 1 - 1000");

uint256 _oldMaxOperatorLand = maxOperatorLand;

maxOperatorLand = _newMaxOperatorLand;

PUBLIC 20

Aniverse - ANIV721Land - Smart Contract Audit

185

186

emit SetMaxOperatorLand(_oldMaxOperatorLand, _newMaxOperatorLand);

}

Listing 3.2 Limiting the length of the token approval array for each operator

PUBLIC 21

Aniverse - ANIV721Land - Smart Contract Audit

No. 4 Possibly Permanent Ownership Removal

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 54 - 56

Detailed Issue

The ERC721Tradable contract inherits from the Ownable abstract contract. The Ownable contract

implements the renounceOwnership function (L54 - 56 in the code snippet below), which can remove the

contract’s ownership permanently.

If the contract owner mistakenly invokes the renounceOwnership function, they will immediately lose

ownership of the contract, and this action cannot be undone.

Ownable.sol

54

55

56

71

72

73

74

75

function renounceOwnership() public virtual onlyOwner {

_transferOwnership(address(0));

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 4.1 The renounceOwnership function
that can remove the ownership of the contract permanently

PUBLIC 22

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We consider the renounceOwnership function risky, and the contract owner should use this function with

extra care.

If possible, we recommend removing or disabling this function from the contract. The code snippet below

shows an example solution to disabling the associated renounceOwnership function.

ERC721Tradable.sol

146

147

148

function renounceOwnership() external override onlyOwner {

revert("Ownable: renounceOwnership function is disabled");

}

Listing 4.2 The disabled renounceOwnership function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue by disabling the renounceOwnership function according to our

recommendation.

PUBLIC 23

Aniverse - ANIV721Land - Smart Contract Audit

No. 5 Unsafe Ownership Transfer

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files @openzeppelin/contracts/access/Ownable.sol

Locations Ownable.sol L: 62 - 65

Detailed Issue

The ERC721Tradable contract inherits from the Ownable abstract contract. The Ownable contract

implements the transferOwnership function (L62 - 65 in the code snippet below), which can transfer the

ownership of the contract from the current owner to another owner.

Ownable.sol

62

63

64

65

71

72

73

74

75

function transferOwnership(address newOwner) public virtual onlyOwner {

require(newOwner != address(0), "Ownable: new owner is the zero address");

_transferOwnership(newOwner);

}

// (...SNIPPED...)

function _transferOwnership(address newOwner) internal virtual {

address oldOwner = _owner;

_owner = newOwner;

emit OwnershipTransferred(oldOwner, newOwner);

}

Listing 5.1 The transferOwnership function that has the unsafe ownership transfer

From the code snippet above, the address variable newOwner (L62) may be incorrectly specified by the

current owner by mistake; for example, an address that a new owner does not own was inputted.

Consequently, the new owner loses ownership of the contract immediately, and this action is unrecoverable.

PUBLIC 24

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend applying the two-step ownership transfer mechanism as shown in the code snippet below.

ERC721Tradable.sol

146

147

148

149

150

151

152

153

154

155

156

function transferOwnership(address _candidateOwner) public override onlyOwner {

require(_candidateOwner != address(0), "Ownable: candidate owner is the zero

address");

candidateOwner = _candidateOwner;

emit NewCandidateOwner(_candidateOwner);

}

function claimOwnership() external {

require(candidateOwner == _msgSender(), "Ownable: caller is not the

candidate owner");

_transferOwnership(candidateOwner);

candidateOwner = address(0);

}

Listing 5.2 The recommended two-step ownership transfer mechanism

This mechanism works as follows.

1. The current owner invokes the transferOwnership function by specifying the candidate owner

address _candidateOwner (L146).

2. The candidate owner proves access to his account and claims the ownership transfer by invoking

the claimOwnership function (L152)

The recommended mechanism ensures that the ownership of the contract would be transferred to another

owner who can access his account only.

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue by adopting the two-step ownership transfer mechanism as per our

suggestion.

PUBLIC 25

Aniverse - ANIV721Land - Smart Contract Audit

No. 6 Recommended Adding A Setter Function For Proxy Registry Address

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 49 and 83 - 96

Detailed Issue

The proxyRegistryAddress state variable (L49 in the code snippet below) would point to an external

ProxyRegistry contract, and this variable is used in the isApprovedForAll function (L90).

However, we found that there is no setter function that can update the value of the proxyRegistryAddress

variable. Hence, if the address of the ProxyRegistry contract has to be changed in the future, the

ANIV721Land’s contract owner would have no approach to updating this variable, and this issue might

impact the function of the ANIV721Land contract.

ERC721Tradable.sol

49

83

84

85

86

87

88

89

90

91

92

93

94

95

96

address proxyRegistryAddress;

// (...SNIPPED...)

function isApprovedForAll(address owner, address operator)

public

view

override

returns (bool)

{

// Whitelist OpenSea proxy contract for easy trading.

ProxyRegistry proxyRegistry = ProxyRegistry(proxyRegistryAddress);

if (address(proxyRegistry.proxies(owner)) == operator) {

return true;

}

return super.isApprovedForAll(owner, operator);

}

Listing 6.1 The isApprovedForAll function calling the external contract
pointed by the state variable proxyRegistryAddress

PUBLIC 26

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend implementing a setter function for updating the proxyRegistryAddress state variable as

shown in the below code snippet. And, this setter function should be under the control of the Timelock

mechanism.

ERC721Tradable.sol

51

148

149

150

151

152

153

event SetProxyRegistryAddress(address indexed _oldAddress, address indexed

_newAddress);

// (...SNIPPED...)

function setProxyRegistryAddress(address _newProxyRegistryAddress) external

onlyOwner {

require(_newProxyRegistryAddress != address(0), "Set proxy registry address

to zero address");

address _oldAddress = proxyRegistryAddress;

proxyRegistryAddress = _newProxyRegistryAddress;

emit SetProxyRegistryAddress(_oldAddress, _newProxyRegistryAddress);

}

Listing 6.2 The recommended setProxyRegistryAddress function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team partially fixed this issue by implementing the setProxyRegistryAddress function as per

our recommendation. However, the setProxyRegistryAddress function would not be controlled under the

Timelock mechanism.

PUBLIC 27

Aniverse - ANIV721Land - Smart Contract Audit

No. 7 Lack Of Deadline For Meta Transactions

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Acknowledged

Associated Files contracts/erc721/common/meta-transactions/NativeMetaTransaction.sol

Locations NativeMetaTransaction.sol L: 10 - 14, 27 - 31, and 69 - 83

Detailed Issue

The ANIV721Land contract supports the meta-transaction feature allowing relayers such as OpenSea’s

relayers to execute a transaction signed by a user and pay gas for a user.

We noticed that, however, the process of proving the meta transaction does not include a deadline which is

an important property in the process (code snippet below). Specifically, the deadline property would restrict

an expired timestamp of each signed meta transaction. The signed transaction payload would be invalid if its

deadline property is reached.

Lacking the deadline property, a signed meta-transaction payload might be submitted anytime without any

control from a user.

Since the ANIV721Land contract must be interacting with OpenSea’s meta-transaction features, changing

the way to prove the signed payload might break the compatibility with OpenSea. For this reason, we would

like to raise this issue as acknowledgment only.

NativeMetaTransaction.sol

10

11

12

13

14

27

28

29

30

31

bytes32 private constant META_TRANSACTION_TYPEHASH = keccak256(

bytes(

"MetaTransaction(uint256 nonce,address from,bytes functionSignature)"

)

);

// (...SNIPPED...)

struct MetaTransaction {

uint256 nonce;

address from;

bytes functionSignature;

}

PUBLIC 28

Aniverse - ANIV721Land - Smart Contract Audit

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

// (...SNIPPED...)

function hashMetaTransaction(MetaTransaction memory metaTx)

internal

pure

returns (bytes32)

{

return

keccak256(

abi.encode(

META_TRANSACTION_TYPEHASH,

metaTx.nonce,

metaTx.from,

keccak256(metaTx.functionSignature)

)

);

}

Listing 7.1 The deadline property was not included
in the process of proving a meta transaction

Recommendations

Since the ANIV721Land contract must be interacting with OpenSea’s meta-transaction features, changing

the way to prove the signed payload might break the compatibility with OpenSea. For this reason, we would

like to raise this issue as acknowledgment only.

Reassessment

The Aniverse team acknowledged this issue.

PUBLIC 29

Aniverse - ANIV721Land - Smart Contract Audit

No. 8 Possibly Bypassing Token Disapproval Mechanism

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 108 - 113

Detailed Issue

We noticed that the approve function (L108 - 113 in code snippet 8.1) is vulnerable to bypassing a token

disapproval mechanism when an Aniverse operator gets revoked. The root cause of this issue is that the

function uses msg.sender to get a function caller. Since the ANIV721Land contract supports meta

transactions, adopting the msg.sender, in this case, can cause the bypassing issue.

Consider the following scenario to understand this issue.

1. A contract owner (also the TokenA owner) signs a meta transaction to approve the TokenA to an

Aniverse operator.

2. Anyone (including the contract owner itself) submits the signed meta-transaction payload to the

NativeMetaTransaction.executeMetaTransaction() function (L33 - 67 in code snippet 8.2).

3. The executeMetaTransaction function verifies the payload and executes the target

ERC721Tradable.approve(AniverseOperator’s address, TokenA’s id) function (L61 - 63 in code

snippet 8.2)

4. The approve function’s execution flow would not execute the _addLandToOperator function (L110 in

code snippet 8.1) since the msg.sender would demonstrate that the function caller is the contract

itself (i.e., this address), not the contract owner.

Consequently, the approved Aniverse operator would not track the approval of the TokenA.

5. The contract owner executes the ERC721Tradable.revokeOperator(AniverseOperator’s address)
function to revoke the Aniverse operator (L119 - 125 in code snippet 8.3). At this step, the approval

of the TokenA to the revoking operator would not be disapproved.

6. The revoked operator has the full right to operate on the TokenA, even transfer the token to itself,

since it is not an Aniverse operator anymore.

PUBLIC 30

Aniverse - ANIV721Land - Smart Contract Audit

ERC721Tradable.sol

108

109

110

111

112

113

127

128

129

130

131

132

133

function approve(address to, uint256 tokenId) public override {

if (msg.sender == owner()) {

_addLandToOperator(to, tokenId);

}

super.approve(to, tokenId);

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

}

Listing 8.1 The vulnerable approve function

NativeMetaTransaction.sol

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

function executeMetaTransaction(

address userAddress,

bytes memory functionSignature,

bytes32 sigR,

bytes32 sigS,

uint8 sigV

) public payable returns (bytes memory) {

MetaTransaction memory metaTx = MetaTransaction({

nonce: nonces[userAddress],

from: userAddress,

functionSignature: functionSignature

});

require(

verify(userAddress, metaTx, sigR, sigS, sigV),

"Signer and signature do not match"

);

// increase nonce for user (to avoid re-use)

nonces[userAddress] = nonces[userAddress].add(1);

emit MetaTransactionExecuted(

userAddress,

payable(msg.sender),

functionSignature

);

PUBLIC 31

Aniverse - ANIV721Land - Smart Contract Audit

59

60

61

62

63

64

65

66

67

// Append userAddress and relayer address at the end to extract it from

calling context

(bool success, bytes memory returnData) = address(this).call(

abi.encodePacked(functionSignature, userAddress)

);

require(success, "Function call not successful");

return returnData;

}

Listing 8.2 The executeMetaTransaction function that allows anyone to
submit a meta transaction to invoke ANIV721Land contract’s functions

ERC721Tradable.sol

119

120

121

122

123

124

125

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

}

}

Listing 8.3 The revokeOperator function that revokes an Aniverse operator and
disapproves all the operator’s (tracked) approved tokens

Recommendations

We recommend calling the _msgSender function (L109 in the code snippet below) instead of using the

msg.sender to get a legitimate function caller.

ERC721Tradable.sol

101

102

103

108

109

110

111

112

113

function _msgSender() internal view override returns (address sender) {

return ContextMixin.msgSender();

}

// (...SNIPPED...)

function approve(address to, uint256 tokenId) public override {

if (_msgSender() == owner()) {

_addLandToOperator(to, tokenId);

}

super.approve(to, tokenId);

}

Listing 8.4 The improved approve function

PUBLIC 32

Aniverse - ANIV721Land - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed according to our recommendation.

PUBLIC 33

Aniverse - ANIV721Land - Smart Contract Audit

No. 9 Possible Cross-Chain Replay Attack Over Meta Transactions

Risk Medium
Likelihood Low

Impact High

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/common/meta-transactions/EIP712Base.sol

Locations EIP712Base.sol L: 67 - 76

Detailed Issue

In the EIP712Base contract, the _initializeEIP712 function (L27 - 34 in code snippet 9.1) would be executed

only once at a contract construction. The _initializeEIP712 function would invoke the _setDomainSeperator

function (L33) to compute the state variable domainSeperator (L37).

One of the integral components of the domainSeperator is the chainId (L43) that would be used to prevent a

replay attack across the blockchain networks.

We found that the computed domainSeperator would be used to calculate a typed message hash in the

toTypedMessageHash function (L74 in code snippet 9.2). Since the domainSeperator would be initialized

only once at a contract construction, the chainId variable would not be updated if the hard fork of the chain

occurs. This issue opens room for a cross-chain replay attack, as a signed message payload from a

user/signer would be executable on both the forked chains.

As a result, an attacker can use a valid signed message executed on one forked chain to replay and execute

a transaction on behalf of a user/signer on another forked chain.

EIP712Base.sol

27

28

29

30

31

32

33

34

35

36

37

38

function _initializeEIP712(

string memory name

)

internal

initializer

{

_setDomainSeperator(name);

}

function _setDomainSeperator(string memory name) internal {

domainSeperator = keccak256(

abi.encode(

PUBLIC 34

Aniverse - ANIV721Land - Smart Contract Audit

39

40

41

42

43

44

45

46

52

53

54

55

56

57

58

EIP712_DOMAIN_TYPEHASH,

keccak256(bytes(name)),

keccak256(bytes(ERC712_VERSION)),

address(this),

bytes32(getChainId())

)

);

}

// (...SNIPPED...)

function getChainId() public view returns (uint256) {

uint256 id;

assembly {

id := chainid()

}

return id;

}

Listing 9.1 The domainSeperator would be constructed only once by the _initializeEIP712 function

EIP712Base.sol

48

49

50

67

68

69

70

71

72

73

74

75

76

function getDomainSeperator() public view returns (bytes32) {

return domainSeperator;

}

// (...SNIPPED...)

function toTypedMessageHash(bytes32 messageHash)

internal

view

returns (bytes32)

{

return

keccak256(

abi.encodePacked("\x19\x01", getDomainSeperator(), messageHash)

);

}

Listing 9.2 The domainSeperator would be reused every time to compute a typed message hash in the
toTypedMessageHash function

PUBLIC 35

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend computing the domainSeperator every time when calculating a typed message hash. In

other words, we compute the domainSeperator in the getDomainSeperator function (L48 - 59) as presented

in the below code snippet.

However, the suggested code may consume more gas when compared to the original code. For the gas

optimization solution, please consider the EIP712 contract of OpenZeppelin as a reference, link:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol

.

EIP712Base.sol

48

49

50

51

52

53

54

55

56

57

58

59

76

77

78

79

80

81

82

83

84

85

function getDomainSeperator() public view returns (bytes32) {

return

keccak256(

abi.encode(

EIP712_DOMAIN_TYPEHASH,

keccak256(bytes(name)),

keccak256(bytes(ERC712_VERSION)),

address(this),

bytes32(getChainId())

)

);

}

// (...SNIPPED...)

function toTypedMessageHash(bytes32 messageHash)

internal

view

returns (bytes32)

{

return

keccak256(

abi.encodePacked("\x19\x01", getDomainSeperator(), messageHash)

);

}

Listing 9.3 Computing the domainSeperator every time when calculating a typed message hash

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

This issue was fixed in accordance with our suggestion.

PUBLIC 36

Aniverse - ANIV721Land - Smart Contract Audit

No. 10 Recommended Changing Visibility Of State Variables For Transparency

Risk Medium
Likelihood Medium

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 41 and 49

Detailed Issue

We found that the _operartorLandApproval was declared a private state variable (L41 in the below code

snippet) whereas the proxyRegistryAddress was declared an internal state variable (L49).

The current visibilities would not allow platform users to examine the variables’ state via a blockchain

explorer which may raise concerns in the community about transparency and traceability issues.

For this reason, we consider that the visibility of the state variables _operartorLandApproval and

proxyRegistryAddress should be declared public to improve transparency and traceability issues.

ERC721Tradable.sol

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

// (...SNIPPED...)

abstract contract ERC721Tradable is

ERC721,

ContextMixin,

NativeMetaTransaction,

Operator,

Ownable

{

using SafeMath for uint256;

using Counters for Counters.Counter;

bool IS_USE_OPENSEA_PROXY;

mapping(address => uint256[]) private _operartorLandApproval;

/**

* We rely on the OZ Counter util to keep track of the next available ID.

* We track the nextTokenId instead of the currentTokenId to save users on

gas costs.

PUBLIC 37

Aniverse - ANIV721Land - Smart Contract Audit

46

47

48

49

* Read more about it here:

https://shiny.mirror.xyz/OUampBbIz9ebEicfGnQf5At_ReMHlZy0tB4glb9xQ0E

*/

address proxyRegistryAddress;

// (...SNIPPED...)

Listing 10.1 The associated _operartorLandApproval and proxyRegistryAddress state variables

Recommendations

We recommend changing the visibility of the state variables _operartorLandApproval (L41) and

proxyRegistryAddress (L49) to improve transparency and traceability issues as presented in the code

snippet below.

ERC721Tradable.sol

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

// (...SNIPPED...)

abstract contract ERC721Tradable is

ERC721,

ContextMixin,

NativeMetaTransaction,

Operator,

Ownable

{

using SafeMath for uint256;

using Counters for Counters.Counter;

bool IS_USE_OPENSEA_PROXY;

mapping(address => uint256[]) public _operartorLandApproval;

/**

* We rely on the OZ Counter util to keep track of the next available ID.

* We track the nextTokenId instead of the currentTokenId to save users on

gas costs.

* Read more about it here:

https://shiny.mirror.xyz/OUampBbIz9ebEicfGnQf5At_ReMHlZy0tB4glb9xQ0E

*/

address public proxyRegistryAddress;

// (...SNIPPED...)

Listing 10.2 The public _operartorLandApproval and proxyRegistryAddress state variables

PUBLIC 38

Aniverse - ANIV721Land - Smart Contract Audit

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue as per our suggestion.

PUBLIC 39

Aniverse - ANIV721Land - Smart Contract Audit

No. 11 Potential Approval Of Duplicated Token IDs

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 127 - 133

Detailed Issue

The ERC721Tradable contract keeps track of all permitted operators using the _operartorLandApproval

mapping. A contract owner can approve their land token (i.e., tokenId) to an operator (i.e., to) by invoking the

_addLandToOperator function (L110 in the code snippet below) through the approve function (L108 - 113).

However, we detected the possibility of approving a duplicated tokenId to an operator since the

_addLandToOperator function does not check for a duplicated tokenId before pushing it into the operator’s

approval tracking array, _tokenId (L131).

Subsequently, on a contract owner invoking the revokeOperator function to revoke a specific operator, the

duplicated tokenIds make the revokeOperator function consume more unnecessary gas.

ERC721Tradable.sol

108

109

110

111

112

113

127

128

129

130

131

132

133

function approve(address to, uint256 tokenId) public override {

if (msg.sender == owner()) {

_addLandToOperator(to, tokenId);

}

super.approve(to, tokenId);

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

}

Listing 11.1 The _addLandToOperator function that does not check for duplicated tokenIds

PUBLIC 40

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend updating the ERC721Tradable contract to check for duplicated tokenIds as shown in the

below code snippet. More specifically, the mapping _operatorTokenApproval was added to track the approval

of a specific tokenId to a particular operator (L43).

The _addLandToOperator function was improved to detect if a tokenId was already approved for the given

operator or not (L133). The function would allow the approval if and only if the specified tokenId was not

approved before.

ERC721Tradable.sol

43

121

122

123

124

125

126

127

128

130

131

132

133

134

135

136

137

138

139

140

141

142

143

mapping(address => mapping(uint256 => bool)) public _operatorTokenApproval;

// (...SNIPPED...)

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

_operatorTokenApproval[to][_tokenId[i]] = false;

}

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

require(!_operatorTokenApproval[to][tokenId], "tokenId was approved");

uint256[] storage _tokenId = _operartorLandApproval[to];

if (getApproved(tokenId) != address(0)) {

_operatorTokenApproval[getApproved(tokenId)][tokenId] = false;

}

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

_operatorTokenApproval[to][tokenId] = true;

}

Listing 11.2 The improved revokeOperator and _addLandToOperator functions
that check for duplicated tokenIds

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 41

Aniverse - ANIV721Land - Smart Contract Audit

Reassessment

The Aniverse team fixed this issue according to our suggestion.

PUBLIC 42

Aniverse - ANIV721Land - Smart Contract Audit

No. 12 Lack Of Clearing Land Approval Array Of Revoked Operator

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 119 - 125

Detailed Issue

The revokeOperator function revokes an Aniverse operator (L120 in code snippet 12.1) and then

disapproves all tokens ever approved to the operator (L122 - 124).

However, we discovered that the revokeOperator function revokes an operator without clearing the land

approval array of that operator (_operartorLandApproval[to]), resulting in the possibility of disapproving an

address other than the revoked operator’s address in the future.

Let’s consider the following scenario to learn more about this issue.

1. A contract owner (also the TokenA owner) calls the approve(AniverseOperatorBob’s address,
TokenA’s id) function to approve the TokenA to the Aniverse operator, Bob (L108 - 113 in code

snippet 12.2).

2. The contract owner executes the revokeOperator(AniverseOperatorBob’s address) function to

revoke the operator Bob. At this step, Bob is revoked (L120 in code snippet 12.1) and the approval

of the TokenA is disapproved (L122 - 124).

Nonetheless, the revokeOperator function does not clear the land approval array of the operator Bob

(_operartorLandApproval[AniverseOperatorBob’s address]) at this step.

3. The contract owner executes the approve(AniverseOperatorAlice’s address, TokenA’s id)
function to approve the TokenA to another operator, Alice (L108 - 113 in code snippet 12.2).

4. The contract owner invokes the addOperator(AniverseOperatorBob’s address) function to add

the operator Bob back to work again (L115 - 117 in code snippet 12.3).

5. The contract owner executes the revokeOperator(AniverseOperatorBob’s address) function to

revoke the operator Bob again.

PUBLIC 43

Aniverse - ANIV721Land - Smart Contract Audit

At this step, Bob is revoked but the approval of the TokenA to the operator Alice gets disapproved

unexpectedly since the land approval array of the operator Bob

(_operartorLandApproval[AniverseOperatorBob’s address]) was not previously cleared in Step 2.

ERC721Tradable.sol

119

120

121

122

123

124

125

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

}

}

Listing 12.1 The revokeOperator function that
does not clear the land approval array of a revoked operator

ERC721Tradable.sol

108

109

110

111

112

113

127

128

129

130

131

132

133

function approve(address to, uint256 tokenId) public override {

if (msg.sender == owner()) {

_addLandToOperator(to, tokenId);

}

super.approve(to, tokenId);

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

}

Listing 12.2 The approve and _addLandToOperator functions

ERC721Tradable.sol

115

116

117

function addOperator(address to) public onlyOwner {

_addOperator(to);

}

Listing 12.3 The addOperator function

PUBLIC 44

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend clearing the land approval array after revoking any operator like L125 in the code snippet

below.

ERC721Tradable.sol

119

120

121

122

123

124

125

126

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

}

delete _operartorLandApproval[to];

}

Listing 12.4 The improved revokeOperator function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue in accordance with our suggestion.

PUBLIC 45

Aniverse - ANIV721Land - Smart Contract Audit

No. 13 Possibly Incorrect Token Disapproval

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 119 - 125

Detailed Issue

The revokeOperator function would typically revoke an Aniverse operator (L120 in code snippet 13.1) and

then disapprove all tokens ever approved to the operator (L122 - 124).

Nevertheless, we found the case that the revokeOperator function can operate incorrectly. Specifically, the

revokeOperator function can disapprove an address other than the revoking Aniverse operator.

To elaborate on the issue, let’s consider the following scenario.

1. A contract owner (also the TokenA owner) calls the ERC721Tradable.approve(AniverseOperator’s
address, TokenA’s id) function to approve the TokenA to the Aniverse operator.

2. The contract owner executes the ERC721.setApprovalForAll(Bob’s address, true) function (L136

- 138 in code snippet 13.2) to approve Bob as an external operator (the operator tracked by the

ERC721 contract, not the Aniverse operator) to operate on all of the owner’s tokens, including the

TokenA.

3. The external operator Bob invokes the ERC721.approve(Alice’s address, TokenA’s id) function

(L112 - 122 in code snippet 13.3) to approve the TokenA to Alice. At this step, the approval of

TokenA has been changed from the Aniverse operator to Alice now.

4. The contract owner executes ERC721Tradable.revokeOperator(AniverseOperator’s address)
function to revoke the Aniverse operator (L119 - 125 in code snippet 13.1). At this step, Alice's

approval for the TokenA would be disapproved unexpectedly since the TokenA’s id was still tracked

by the revoking operator.

PUBLIC 46

Aniverse - ANIV721Land - Smart Contract Audit

ERC721Tradable.sol

119

120

121

122

123

124

125

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

_approve(address(0), _tokenId[i]);

}

}

Listing 13.1 The revokeOperator function that can disapprove an address
other than the revoking Aniverse operator

ERC721.sol

136

137

138

368

369

370

371

372

373

374

375

376

function setApprovalForAll(address operator, bool approved) public virtual

override {

_setApprovalForAll(_msgSender(), operator, approved);

}

// (...SNIPPED...)

function _setApprovalForAll(

address owner,

address operator,

bool approved

) internal virtual {

require(owner != operator, "ERC721: approve to caller");

_operatorApprovals[owner][operator] = approved;

emit ApprovalForAll(owner, operator, approved);

}

Listing 13.2 The setApprovalForAll and _setApprovalForAll functions of the ERC721 contract

ERC721.sol

112

113

114

115

116

117

118

119

120

121

122

function approve(address to, uint256 tokenId) public virtual override {

address owner = ERC721.ownerOf(tokenId);

require(to != owner, "ERC721: approval to current owner");

require(

_msgSender() == owner || isApprovedForAll(owner, _msgSender()),

"ERC721: approve caller is not owner nor approved for all"

);

_approve(to, tokenId);

}

PUBLIC 47

Aniverse - ANIV721Land - Smart Contract Audit

Listing 13.3 The approve function of the ERC721 contract

Recommendations

We recommend updating the revokeOperator function as the code snippet below. The function would check

whether or not the currently approved address for each token equals a revoking operator (L123), and the

function would disapprove a token if and only if the currently approved address is the revoking operator

(L124).

ERC721Tradable.sol

119

120

121

122

123

124

125

126

127

function revokeOperator(address to) public onlyOwner {

_revokeOperator(to);

uint256[] memory _tokenId = _operartorLandApproval[to];

for (uint256 i = 0; i < _tokenId.length; i++) {

if (getApproved(_tokenId[i]) == to) {

_approve(address(0), _tokenId[i]);

}

}

}

Listing 13.4 The improved revokeOperator function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue according to our suggestion.

PUBLIC 48

Aniverse - ANIV721Land - Smart Contract Audit

No. 14 Recommended Adding A Setter Function For Base Token URI

Risk Low
Likelihood Low

Impact Medium

Functionality is
in use In use Status Partially Fixed

Associated Files contracts/ANIV721Land.sol

Locations ANIV721Land.sol L: 22 - 24

Detailed Issue

The ANIV721Land contract has the baseTokenURI function (L22 - 24 in the code snippet below) indicating

the base token URI for each land token of the platform.

However, we noticed that the base token URI is hard coded in the current implementation (L23) which cannot

be changed after the contract deployment. If the base token URI has to be updated somehow, the developer

would have no solution to updating this base URI. This issue can render all land tokens’ metadata to be

inaccessible.

ANIV721Land.sol

22

23

24

function baseTokenURI() public pure override returns (string memory) {

return "https://api-asset-dev.aniv.io/OpenSeaLand/by_token/";

}

Listing 14.1 The baseTokenURI function of the ANIV721Land contract

Recommendations

We recommend adding a setter function for updating the base token URI. However, the setter function

should be under the control of the Timelock mechanism.

If possible, furthermore, all land tokens’ metadata should be hosted on a decentralized storage system, such

as IPFS, to ensure the availability and integrity of the metadata.

PUBLIC 49

Aniverse - ANIV721Land - Smart Contract Audit

Reassessment

The Aniverse team fixed this issue by adding a setter function for updating the base token URI according to

our recommendation. Nonetheless, the setter function would not be under the control of the Timelock

mechanism.

PUBLIC 50

Aniverse - ANIV721Land - Smart Contract Audit

No. 15 Recommended Event Emissions For Transparency And Traceability

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files
contracts/Operator.sol

contracts/erc721/ERC721Tradable.sol

Locations Operator.sol L: 7 - 11 and 13 - 17
ERC721Tradable.sol L: 51 - 59 and 127 - 133

Detailed Issue

We consider operations of the following state-changing functions important and require proper event

emissions for improving transparency and traceability.

● _addOperator function (L7 - 11 in code snippet 15.1)

● _revokeOperator function (L13 - 17 in code snippet 15.1)

● constructor (L51 - 59 in code snippet 15.2)

● _addLandToOperator function (L127 - 133 in code snippet 15.2)

Operator.sol

4

5

6

7

8

9

10

11

12

13

14

15

16

17

contract Operator {

mapping(address => bool) private _operators;

function _addOperator(address operatorAddr) internal virtual {

require(operatorAddr != address(0), "Operator can't be address zero");

require(!_operators[operatorAddr], "Duplicate operator");

_operators[operatorAddr] = true;

}

function _revokeOperator(address operatorAddr) internal virtual {

require(operatorAddr != address(0), "Operator can't be address zero");

require(_operators[operatorAddr], "operator not found");

delete _operators[operatorAddr];

}

// (...SNIPPED...)

PUBLIC 51

Aniverse - ANIV721Land - Smart Contract Audit

22 }

Listing 15.1 The _addOperator and _revokeOperator functions

ERC721Tradable.sol

51

52

53

54

55

56

57

58

59

127

128

129

130

131

132

133

constructor(

string memory _name,

string memory _symbol,

address _proxyRegistryAddress

) ERC721(_name, _symbol) {

IS_USE_OPENSEA_PROXY = false;

proxyRegistryAddress = _proxyRegistryAddress;

_initializeEIP712(_name);

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

}

Listing 15.2 The constructor and _addLandToOperator functions

Recommendations

We recommend emitting relevant events in the associated functions to improve transparency and traceability

like the code snippets 15.3 and 15.4 below.

Operator.sol

4

5

6

7

8

9

10

11

12

13

14

15

contract Operator {

mapping(address => bool) private _operators;

event AddOperator(address indexed operatorAddr);

event RevokeOperator(address indexed operatorAddr);

function _addOperator(address operatorAddr) internal virtual {

require(operatorAddr != address(0), "Operator can't be address zero");

require(!_operators[operatorAddr], "Duplicate operator");

_operators[operatorAddr] = true;

emit AddOperator(operatorAddr);

}

PUBLIC 52

Aniverse - ANIV721Land - Smart Contract Audit

16

17

18

19

20

21

22

27

function _revokeOperator(address operatorAddr) internal virtual {

require(operatorAddr != address(0), "Operator can't be address zero");

require(_operators[operatorAddr], "operator not found");

delete _operators[operatorAddr];

emit RevokeOperator(operatorAddr);

}

// (...SNIPPED...)

}

Listing 15.3 The improved _addOperator and _revokeOperator functions

ERC721Tradable.sol

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

134

135

136

137

138

139

140

141

event SetIsUseOpenseaProxy(bool indexed isUseOpenseaProxy);

event SetProxyRegistryAddress(address indexed proxyRegistryAddress);

event AddLandToOperator(uint256 indexed tokenId, address indexed operatorAddr);

constructor(

string memory _name,

string memory _symbol,

address _proxyRegistryAddress

) ERC721(_name, _symbol) {

IS_USE_OPENSEA_PROXY = false;

proxyRegistryAddress = _proxyRegistryAddress;

_initializeEIP712(_name);

emit SetIsUseOpenseaProxy(IS_USE_OPENSEA_PROXY);

emit SetProxyRegistryAddress(proxyRegistryAddress);

}

// (...SNIPPED...)

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

emit AddLandToOperator(tokenId, to);

}

Listing 15.4 The improved constructor and _addLandToOperator functions

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

PUBLIC 53

Aniverse - ANIV721Land - Smart Contract Audit

Reassessment

This issue was fixed by emitting proper events on all associated functions.

PUBLIC 54

Aniverse - ANIV721Land - Smart Contract Audit

No. 16 Possibly Minting Out-Of-Bound Token ID

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/ANIV721Land.sol

Locations ANIV721Land.sol L: 30 - 34

Detailed Issue

The ANIV721Land contract has a function for minting a land token named the mint function (L30 - 34 in the

code snippet below). The function is restricted to a contract owner to invoke only. This function validates the

total supply to limit the total amount of tokens that can be minted (L31).

However, we found that there are no bounds checking for the tokenId parameter before minting which could

allow an owner to mint a land token with an out-of-bound tokenId mistakenly.

ANIV721Land.sol

30

31

32

33

34

function mint(address _to, uint256 tokenId) public onlyOwner {

require(_totalSupply.current() < MAX_LANDS, "tokenId is out of bounds");

_safeMint(_to, tokenId);

_totalSupply.increment();

}

Listing 16.1 Themint function that lacks of bounds checking for the tokenId parameter

Recommendations

We recommend adding the require statement to check whether the tokenId is exceeding the MAX_LANDS

or not like L32 in the code snippet below.

ANIV721Land.sol

30

31

32

33

34

function mint(address _to, uint256 tokenId) public onlyOwner {

require(_totalSupply.current() < MAX_LANDS, "tokenId is out of bounds");

require(tokenId < MAX_LANDS, "tokenId must be less than MAX_LANDS");

_safeMint(_to, tokenId);

_totalSupply.increment();

PUBLIC 55

Aniverse - ANIV721Land - Smart Contract Audit

35 }

Listing 16.2 The improved mint function adding the tokenId validation

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team remediated this issue by validating that the range of the inputted tokenId must be

between 1 to MAX_LANDS (including the lower and upper bounds).

ANIV721Land.sol

41

42

43

44

45

46

function mint(address _to, uint256 tokenId) public onlyOwner {

require(_totalSupply.current() < MAX_LANDS, "Total supply is Maxed");

require(tokenId > 0 && tokenId <= MAX_LANDS, "Token Id must be more than 0

AND less than or equal to MAX_LANDS");

_safeMint(_to, tokenId);

_totalSupply.increment();

}

Listing 16.3 The fixed mint function

PUBLIC 56

Aniverse - ANIV721Land - Smart Contract Audit

No. 17 Lack Of Validating Existence Of Token ID

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 68 - 78

Detailed Issue

The ERC721Tradable contract implements the tokenURI function (the code snippet below) to encode and

return the token URI in accordance with the inputted _tokenId parameter (L76).

We discovered that the tokenURI function does not verify the existence of the inputted _tokenId parameter.

Specifically, if the parameter _tokenId represents a non-existent token id, the tokenURI function would return

an invalid token URI.

ERC721Tradable.sol

68

69

70

71

72

73

74

75

76

77

78

function tokenURI(uint256 _tokenId)

public

pure

override

returns (string memory)

{

return

string(

abi.encodePacked(baseTokenURI(), Strings.toString(_tokenId))

);

}

Listing 17.1 The tokenURI function that
does not verify the existence of the inputted _tokenId parameter

PUBLIC 57

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend verifying the existence of the inputted _tokenId parameter before computing the token URI

as shown in L74 in the following code snippet.

ERC721Tradable.sol

68

69

70

71

72

73

74

75

76

77

78

79

function tokenURI(uint256 _tokenId)

public

view

override

returns (string memory)

{

require(_exists(_tokenId), "_tokenId does not exist");

return

string(

abi.encodePacked(baseTokenURI(), Strings.toString(_tokenId))

);

}

Listing 17.2 The improved tokenURI function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue as per our recommendation.

PUBLIC 58

Aniverse - ANIV721Land - Smart Contract Audit

No. 18 Recommended Removing Redundant Logic

Risk Low
Likelihood Medium

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 132

Detailed Issue

We detected a redundant logic in the _addLandToOperator function (L132 in the following code snippet).

Since the array _tokenId would be loaded by reference (L130), the “_operartorLandApproval[to] =
_tokenId” statement in L132 is not necessary and can be removed for gas savings.

ERC721Tradable.sol

127

128

129

130

131

132

133

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

_operartorLandApproval[to] = _tokenId;

}

Listing 18.1 The _addLandToOperator function that contains a redundant logic

PUBLIC 59

Aniverse - ANIV721Land - Smart Contract Audit

Recommendations

We recommend removing the redundant logic from the _addLandToOperator function for saving gas as

shown in the code snippet below.

ERC721Tradable.sol

127

128

129

130

131

132

function _addLandToOperator(address to, uint256 tokenId) internal virtual {

require(isOperator(to), "Address is not operator");

require(ERC721.ownerOf(tokenId) == owner(), "Land not owned by owner");

uint256[] storage _tokenId = _operartorLandApproval[to];

_tokenId.push(tokenId);

}

Listing 18.2 The improved _addLandToOperator function

The recommended code provides the concept of how to remediate this issue only. The code should be

adjusted accordingly.

Reassessment

The Aniverse team fixed this issue by removing the redundant logic as per our suggestion.

PUBLIC 60

Aniverse - ANIV721Land - Smart Contract Audit

No. 19 Inconsistent Error Message With The Code

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/ANIV721Land.sol

Locations ANIV721Land.sol L: 31

Detailed Issue

We found an error message inconsistent with the code in the function mint (L31 in the code snippet below).

This inconsistency can lead to misunderstanding among users or developers when maintaining the source

code.

ANIV721Land.sol

30

31

32

33

34

function mint(address _to, uint256 tokenId) public onlyOwner {

require(_totalSupply.current() < MAX_LANDS, "tokenId is out of bounds");

_safeMint(_to, tokenId);

_totalSupply.increment();

}

Listing 19.1 The mint function with an inconsistent error message

Recommendations

We recommend revising the associated error message to reflect the actual code.

Reassessment

The Aniverse team revised the error message to fix this issue.

PUBLIC 61

Aniverse - ANIV721Land - Smart Contract Audit

No. 20 Recommended Removing Unused State Variable

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 39

Detailed Issue

We found that the ERC721Tradable contract declares an unused state variable named

IS_USE_OPENSEA_PROXY (L39 in the code snipped below). This unused variable can be removed to save

contract deployment gas and improve code readability.

ERC721Tradable.sol

29

30

31

32

33

34

35

36

37

38

39

145

abstract contract ERC721Tradable is

ERC721,

ContextMixin,

NativeMetaTransaction,

Operator,

Ownable

{

using SafeMath for uint256;

using Counters for Counters.Counter;

bool IS_USE_OPENSEA_PROXY;

// (...SNIPPED...)

}

Listing 20.1 The unused state variable IS_USE_OPENSEA_PROXY

Recommendations

We recommend removing the unused state variable IS_USE_OPENSEA_PROXY to save contract

deployment gas and improve code readability.

PUBLIC 62

Aniverse - ANIV721Land - Smart Contract Audit

Reassessment

The Aniverse team removed the unused state variable IS_USE_OPENSEA_PROXY according to our

recommendation.

PUBLIC 63

Aniverse - ANIV721Land - Smart Contract Audit

No. 21 Inconsistent Contract Name

Risk Informational
Likelihood Low

Impact Low

Functionality is
in use In use Status Fixed

Associated Files contracts/erc721/common/meta-transactions/ContentMixin.sol

Locations ContentMixin.sol L: 5

Detailed Issue

We found inconsistency between the file name (ContentMixin) and the contract name (ContextMixin) as

presented in the below code snippet, which can confuse the users and developers.

ContentMixin.sol

5

6

7

8

9

10

// (...SNIPPED...)

abstract contract ContextMixin {

function msgSender()

internal

view

returns (address payable sender)

{

// (...SNIPPED...)

Listing 21.1 The contract name ContextMixin

Recommendations

We recommend renaming the associated contract and file names to be consistent.

Reassessment

The associated file name was renamed from ContentMixin.sol to ContextMixin.sol to be consistent with

the contract name.

PUBLIC 64

Aniverse - ANIV721Land - Smart Contract Audit

No. 22 Depending On External Contract

Risk Informational
Likelihood Low

Impact Undetermined

Functionality is
in use In use Status Acknowledged

Associated Files contracts/erc721/ERC721Tradable.sol

Locations ERC721Tradable.sol L: 21 - 23 and 83 - 96

Detailed Issue

The isApprovedForAll function of the ERC721Tradable contract (code snippet 22.1) relies on an external

contract named ProxyRegistry (L90 - 91). Considering the implementation of the ProxyRegistry contract

(code snippet 22.2), we noticed that the contract is just a prototype (incomplete) implementation.

In the deployment time, a complete implementation of the ProxyRegistry contract must be required. We,

therefore, recommend the Aniverse team do a full security audit for the complete version of the

ProxyRegistry contract to guarantee the security of the contract.

ERC721Tradable.sol

83

84

85

86

87

88

89

90

91

92

93

94

95

96

function isApprovedForAll(address owner, address operator)

public

view

override

returns (bool)

{

// Whitelist OpenSea proxy contract for easy trading.

ProxyRegistry proxyRegistry = ProxyRegistry(proxyRegistryAddress);

if (address(proxyRegistry.proxies(owner)) == operator) {

return true;

}

return super.isApprovedForAll(owner, operator);

}

Listing 22.1 The isApprovedForAll function
that depends on an external ProxyRegistry contract

PUBLIC 65

Aniverse - ANIV721Land - Smart Contract Audit

ERC721Tradable.sol

21

22

23

contract ProxyRegistry {

mapping(address => OwnableDelegateProxy) public proxies;

}

Listing 22.2 A prototype implementation of the ProxyRegistry contract

Recommendations

A complete implementation of the ProxyRegistry contract must be required in the deployment time. We,

therefore, recommend the Aniverse team do a full security audit for the complete version of the

ProxyRegistry contract to guarantee the security of the contract.

Reassessment

The Aniverse team acknowledged this issue.

PUBLIC 66

Aniverse - ANIV721Land - Smart Contract Audit

Appendix

About Us

Founded in 2020, Valix Consulting is a blockchain and smart contract security firm offering a wide range of

cybersecurity consulting services such as blockchain and smart contract security consulting, smart contract

security review, and smart contract security audit.

Our team members are passionate cybersecurity professionals and researchers in the areas of private and

public blockchain technology, smart contract, and decentralized application (DApp).

We provide a service for assessing and certifying the security of smart contracts. Our service also includes

recommendations on smart contracts' security and gas optimization to bring the most benefit to users and

platform creators.

Contact Information

info@valix.io

https://www.facebook.com/ValixConsulting

https://twitter.com/ValixConsulting

https://medium.com/valixconsulting

PUBLIC 67

Aniverse - ANIV721Land - Smart Contract Audit

References

Title Link

OWASP Risk Rating
Methodology

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

Smart Contract Weakness
Classification and Test Cases

https://swcregistry.io/

PUBLIC 68

